无穷维随机微分方程的渐近概周期解  被引量:2

Asymptotically Almost Periodic Solutions for Stochastic Differential Equations in Infinite Dimensions

在线阅读下载全文

作  者:陈叶君 丁惠生[1] Chen Yejun;Ding Huisheng(School of Mathematics and Statistics,Jiangxi Normal University,Nanchang 330022)

机构地区:[1]江西师范大学数学与统计学院,南昌330022

出  处:《数学物理学报(A辑)》2023年第2期341-354,共14页Acta Mathematica Scientia

基  金:国家自然科学基金(11861037);江西省双千计划(jxsq2019201001);江西省教育厅研究生创新基金(YC2021-B078)。

摘  要:该文引入了渐近θ-概周期随机过程的概念,并在算子半群理论框架下研究了一类带有渐近概周期系数的无穷维随机微分方程,利用随机分析理论建立了此类随机微分方程渐近θ-概周期解的存在性.此外该文还引入了依路径分布渐近概周期过程的概念,并证明了上述渐近θ-概周期解还是依路径分布渐近概周期的.值得注意的是,在早期的研究结果中,建立的均是更弱的一维分布渐近概周期解的存在性.In this paper,we introduce the notion of asymptotically θ-almost periodic stochastic process and study a class of stochastic differential equations in infinite dimensions with asymptotically almost periodic coeffcients under the framework of operator semigroup theory.Using stochastic analysis theory,the existence of asymptotically θ-almost periodic solutions of these equations is established.In addition,the concept of asymptotically almost periodic process in path distribution is introduced,and we prove that the above solutions are also asymptotically almost periodic in path distribution.It is noteworthy that all the earlier related results only give the existence of asymptotically almost periodic solutions in one-dimensional distribution,which are weaker than asymptotically almost periodic solutions in path distribution.

关 键 词:依路径分布渐近概周期 渐近θ-概周期 随机微分方程 

分 类 号:O211.63[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象