基于小波分析的智能建筑供配电网络故障定位方法  

Fault Location Method for Power Supply and Distribution Network of Intelligent Building Based on Wavelet Analysis

在线阅读下载全文

作  者:汪文焘 WANG Wentao(China Academy of Building Research T.D.Institute,Chengdu 610095,China)

机构地区:[1]中国建筑科学研究院有限公司科技发展研究院,四川成都610095

出  处:《通信电源技术》2023年第3期55-57,共3页Telecom Power Technology

摘  要:在传统供配电网络故障定位方法中,由于对故障信号特征分析的完整性较低,导致最终的定位结果存在较大误差,为此提出基于小波分析的智能建筑供配电网络故障定位方法。在故障信号特征提取阶段,将移动局域信号作为小波信号,在平均波动范围内的最终拟合结果为0的约束条件下,利用复值小波变换的方式计算了以相邻尺度上2个模第一次模拟检验结果,根据其与目标尺度空间同一模极大线之间的关系实现对故障信号特征的提取。在故障定位阶段,归一化处理的方式对小波信号进行预处理后,以信号特征为基础,结合线路上的传输强度实现对故障位置的计算。在测试结果中,设计方法对于不同程度故障的定位结果误差始终稳定在0.50 m以内,具有较高准确性。In the traditional fault location methods for power supply and distribution networks,the integrity of fault signal feature analysis is low,resulting in large errors in the final location results.Therefore,a fault location method for power supply and distribution networks of intelligent buildings based on wavelet analysis is proposed.In the phase of fault signal feature extraction,the moving local signal is taken as the wavelet signal.Under the constraint condition that the final fitting result within the average fluctuation range is 0,the first simulation test results of two modules on adjacent scales are calculated by using the complex wavelet transform,and the fault signal feature extraction is realized based on the relationship between the two modules and the same the first mock examination maxima in the target scale space.In the fault location stage,after the wavelet signal is preprocessed by normalized processing,the fault location is calculated based on the signal characteristics and the transmission strength on the line.In the test results,the positioning error of the design method for different degrees of faults is always stable within 0.50m,with high accuracy.

关 键 词:小波分析 智能建筑 供配电网络 故障定位 特征提取 复值小波变换 

分 类 号:TU852[建筑科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象