基于感性工学与人工神经网络的电动剃须刀多感官意象设计方法  被引量:9

Multi-sensory design method of electric shavers based on kansei engineering and artificial neural networks

在线阅读下载全文

作  者:林哲辉 吴正仲 罗峰 潘国庆 LIN Zhe-hui;WU Zheng-zhong;LUO Feng;PAN Guo-qing(School of Design·Straits Institute of Technology,Fujian University of Technology,Fuzhou 350100;Design Innovation Research Center of Humanities and Social Sciences Research Base of Colleges and Universities in Fujian Province,Fuzhou 350100)

机构地区:[1]福建工程学院设计学院·海峡工学院,福建福州350100 [2]福建省高校人文社会科学研究基地设计创新研究中心,福建福州350100

出  处:《机械设计》2023年第2期149-156,共8页Journal of Machine Design

基  金:福建省引进台湾高层次人才“百人计划”基金(GY-S21081)。

摘  要:为研究产品在多感官渠道下传递的情感信息对用户感性期望的影响程度,基于感性工学理论,搜集了电动剃须刀样本220份,消费者感性词汇135组;采用多元尺度法和聚类分析法将样本划分为34个代表性样本,采用焦点小组法筛选出4组代表性感性词汇;采用语义差异问卷测量用户的感性意象,共取样416份;采用造型分析法和音频软件对样本的设计要素进行分类;通过数量化Ⅰ类和倒传式神经网络建立电动剃须刀在视觉和听觉的多感官渠道下整体设计要素与用户感性评价间的关联模型,在多感官设计中,提供给设计人员明确的设计指标与参考,使原本依据经验进行设计的过程更具逻辑化。To investigate the influence of emotional information conveyed by product under multi-sensory channels on user kansei expectations,220 samples of electric shavers and 135 groups of consumer kansei words were collected based on kansei engineering theory.Multivariate scale method and cluster analysis were used to divide the samples into 34 representative samples.Focus group method was used to filter out 4 groups of representative kansei words.416 semantic difference questionnaires were used to measure user kansei imagery.Design elements of the samples were classified using modelling analysis method and audio software.The association model between overall design elements of the electric shaver and user kansei evaluation under multi-sensory channel of visual and auditory was established through quantification theory typeⅠand back propagation neural network.Clear design indicators and references were provided to designers in the multi-sensory design,making original design process based on experience more logical.

关 键 词:产品设计 多感官意象 感性工学 人工神经网络 数量化Ⅰ类 电动剃须刀 

分 类 号:TB472[一般工业技术—工业设计] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象