检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庞哲楠 裴洪 李天梅 胡昌华 司小胜 PANG Zhenan;PEI Hong;LI Tianmei;HU Changhua;SI Xiaosheng(Unit 96901 of PLA,Beijing 100095;College of Missile Engineering,Rocket Force University of Engineering,Xi'an 710025)
机构地区:[1]中国人民解放军96901部队,北京100095 [2]火箭军工程大学导弹工程学院,西安710025
出 处:《机械工程学报》2023年第2期14-29,共16页Journal of Mechanical Engineering
基 金:国家自然科学基金(61833016,61922089,61903376,62073336,61773386,61573365);国家科技攻关(2018YFB1306100)资助项目。
摘 要:在现有考虑不完美维修的随机退化设备剩余寿命预测研究中,通常仅考虑维修活动对退化状态或退化速率的单一影响,仅有考虑二者双重影响的研究,忽略了退化设备的个体差异性。鉴于此,提出一种基于多阶段扩散过程的自适应剩余寿命预测方法,同时考虑不完美维修活动对设备退化状态和退化速率的影响,并利用随机游走模型描述退化速率随观测数据的更新过程以表征设备的个体差异性。基于历史退化数据,利用极大似然估计法得到退化模型参数的初值;基于状态观测数据,利用卡尔曼滤波算法和期望最大化算法自适应的更新模型参数。利用卷积算子和蒙特卡洛方法推导得到了首达时间意义下设备剩余寿命的概率密度函数。最后,通过仿真算例和陀螺仪的实例研究验证了所提方法的有效性和优越性。In the existing research on the remaining useful life prediction of stochastic degradation equipment with imperfect maintenance, only the single influence of maintenance activities on the degradation state or degradation rate is usually considered,while the research that considers both two influences ignores the unit-to-unit variability of degradation equipment. In view of this, an adaptive remaining useful life prognostic approach based on a multi-stage diffusion process is proposed, which takes into account the influence of imperfect maintenance activities on the degradation state and degradation rate, and describes the update process of degradation rate with observation data by using a random walk model to characterize the unit-to-unit variability of equipment. Based on the historical degradation data, the initial values of degradation model parameters are obtained by the maximum likelihood estimation method. Based on the state observation data, the Kalman filtering and expectation-maximization algorithm are used to adaptively update the model parameters. The probability density function of the remaining useful life in the sense of the first hitting time is derived by the convolution operator and the Monte Carlo method. Finally, the effectiveness and superiority of the proposed approach are verified by the simulation example and the case study of gyroscopes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49