检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩萍[1] 张启 石庆研[1] 张泽中 HAN Ping;ZHANG Qi;SHI Qingyan;ZHANG Zezhong(Tianjin Key Lab for Advanced Signal Processing,Civil Aviation University of China,Tianjin 300300,China)
机构地区:[1]中国民航大学智能信号与图像处理天津市重点实验室,天津300300
出 处:《信号处理》2023年第3期439-449,共11页Journal of Signal Processing
基 金:民航局安全能力建设资金项目(KJZ49420210082)。
摘 要:终端区空域环境复杂、航班密集,精确的航迹预测能极大地提高空中交通服务水平,保障航班飞行安全。针对终端区的高精度多航班4D航迹预测问题,本文提出了一种基于密度的带噪声空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)和门控循环单元(Gated Recurrent Unit,GRU)相结合的航迹预测方法,通过DBSCAN聚类,将终端区中航迹相近的航班聚类到一簇中,对每一簇航班建立基于GRU神经网络的航迹预测模型,对终端区航班进行预测时,先判断该航班属于哪一簇,然后采用与该簇对应的航迹预测模型,进行4D航迹预测。与仅研究单一航班的传统预测方法相比,本算法有效地利用了终端区的航迹数据,所建模型可以针对多架航班进行航迹预测,扩大了模型的适用范围,提高了航迹预测的预测精度。In the terminal area,the airspace environment is complex and the flights are dense.Accurate trajectory prediction can greatly improve air traffic service level,and ensure aviation safety.To solve the problem of multi flight and highprecision 4D trajectory prediction required by the terminal area,an algorithm that combines Density-Based Spatial Clustering of Applications with Noise(DBSCAN)and Gated Recurrent Unit(GRU)is proposed.Through DBSCAN,the flights with similar trajectory in the terminal area are clustered into a cluster,and then the GRU is used to train the trajectory prediction model for the trajectories of different clusters.When a flight enters the terminal area and needs to be predicted,first,the flight is judged which cluster belongs to,and then the trajectory prediction model corresponding to this cluster is used for 4D trajectory prediction.Compared with the traditional prediction method that only studies a single flight,this algorithm effectively uses the trajectory data in the terminal area.The built model can predict the trajectory of multiple flights,expand the scope of application of the model,and improve the prediction accuracy of the trajectory prediction.
关 键 词:4D航迹预测 终端区 基于密度的带噪声空间聚类 门控循环单元
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.17.123