检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李超群 黄晓芳[1] 周祖宏 廖敏 Li Chaoqun;Huang Xiaofang;Zhou Zuhong;Liao Min(School of Computer Science&Technology,Southwest University of Science&Technology,Mianyang Sichuan 621000,China;Mianyang Central Hospital,Mianyang Sichuan 621000,China)
机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621000 [2]绵阳中心医院,四川绵阳621000
出 处:《计算机应用研究》2023年第4期1006-1011,共6页Application Research of Computers
基 金:国家自然科学基金面上项目(62076209);四川省科技厅重点资助项目(21ZDYF3119,2022YFG0321)。
摘 要:智能化地制定机器人流程自动化(robotic process automation, RPA)执行路径有利于企业节约相关人力成本以及提高RPA的推广,提出基于改进深度双Q网络(double deep Q-learning algorithms, DDQN)算法进行RPA路径规划。首先针对存在RPA的作业环境即Web页面,不满足深度增强算法的探索条件的问题,借助隐喻地图的思想,通过构建虚拟环境来满足路径规划实验要求。同时为了提高DDQN算法探索效率,提出利用样本之间的位置信息的杰卡德系数,将其作为样本优先度结合基于排名的优先级(rank-based prioritization)构建新的采样方式。通过随机采用任务样本在虚拟环境上进行验证,证明其符合实验要求。进一步比较改进DDQN、深度Q网络(deep Q network, DQN)、DDQN、PPO以及SAC-Discrete算法的实验结果,结果显示改进算法的迭代次数更少、收敛速度更快以及回报值更高,验证了改进DDQN的有效性和可行性。Intelligently formulating the RPA execution path is conducive to saving labor costs and improving the promotion of RPA for enterprises.For the first time,this paper proposed based on improving DDQN algorithm for RPA path planning.First of all,the problem that the working environment of RPA was a Web page,which didn’t meet the exploration conditions of the depth enhancement algorithm,with the help of the idea of metaphor map,it built the virtual environment to meet the requirements of the path planning experiment.At the same time,in order to improve the exploration efficiency of DDQN algorithm,this paper proposed to use the Jaccard coefficient of the location information between samples as a sample priority and combined it with rank-based prioritization to build new sampling methods.This paper randomly used task samples on the virtual environment to verify to demonstrate compliance with the experimental requirements.Further comparison of experimental results of the improved DDQN with DQN,DDQN,PPO and SAC-Discrete shows that the improved algorithm has fewer iterations,faster convergence speed,and higher return value,indicating the effectiveness and feasibility of the improving DDQN algorithm.
关 键 词:深度增强学习 DDQN RPA 业务流程自动化 路径规划 采样策略
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38