基于文字识别的电力仪表智能监控算法研究  

Research on intelligent monitoring algorithm of power instrument based on character recognition

在线阅读下载全文

作  者:金林林 李自愿 王康 马涛[2] 董兰芳[2] JIN Linlin;LI Ziyuan;WANG Kang;MA Tao;DONG Lanfang(Bozhou Electric Power Supply Company,State Grid Anhui Electric Power Company,Bozhou Anhui 236800,China;School of Computer Science and Technology,University of Science and Technology of China,Hefei 230026,China)

机构地区:[1]国网安徽省电力有限公司亳州供电公司,安徽亳州236800 [2]中国科学技术大学计算机科学与技术学院,合肥230026

出  处:《自动化与仪器仪表》2023年第3期199-203,212,共6页Automation & Instrumentation

基  金:国网安徽省电力有限公司科技项目-智能电网设备监控机器人研究与应用(5212T02001CM)。

摘  要:随着我国电力行业的快速发展,电网作业与运行环节越来越复杂,因此电力仪表盘的智能化监控与抄表变成了迫切需求。由于变电站场景的复杂性,拍摄的仪表盘图片会出现分辨率低,字体角度倾斜,文字明亮不一等特点,文字识别具有难度。针对于以上问题,首先通过添加并改进文本角度矫正模块且引入坐标注意力机制增强图像空间变换的学习能力;其次利用文本生成算法增强模型的泛化能力;最后设计文字识别模块完成识别任务。最终模型在电力仪表盘数据集上准确率取得了90.2%的优异成绩,为变电站电力仪表智能监控与抄表提供了有效的决策依据。With the rapid development of China’s power industry, the operation and operation links of power grid are becoming more and more complex. Therefore, the intelligent monitoring and meter reading of power instrument panel has become an urgent demand. Due to the complexity of the substation scene, the instrument panel pictures taken will have the characteristics of low resolution, inclined font angle and different brightness of characters, which makes character recognition difficult. To solve the above problems, firstly, the learning ability of image space transformation is enhanced by adding and improving the text angle correction module and introducing the coordinate attention mechanism;Secondly, text generation algorithm is used to enhance the generalization ability of the model;Finally, the character recognition module is designed to complete the recognition task. The accuracy of the final model in the power instrument panel data set has achieved 90.2%, which provides an effective decision-making basis for the intelligent monitoring and meter reading of power instruments in substations.

关 键 词:电力仪表盘 文字识别 端到端 自注意力机制 智能监控 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象