检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡春华 邓奥 童小芹 缪和 王宗润[2] Hu Chunhua
机构地区:[1]湖南工商大学大数据与互联网创新研究院,移动商务智能湖南省重点实验室,长沙410205 [2]中南大学商学院,长沙410083
出 处:《复印报刊资料(市场营销)》2022年第3期56-65,共10页
基 金:国家自然科学基金面上资助项目(72072053);国家自然科学基金重大资助项目(72091515);湖南创新型省份建设专项(2019GK2131)。
摘 要:社交电商可依据用户间的社交关系为用户提供感兴趣的商品或服务。现有研究多基于社会信任或社会声誉进行推荐,却忽略了信任与声誉间的相互作用,导致推荐效果欠理想。针对以上问题,本文提出了一种融合信任(Trust)和社会声誉(Social Reputation)的图神经网络推荐算法(TSR-GM),采用社会声誉来深度刻画用户关系在推荐系统中的作用,利用社交网络中用户被信任程度对用户声誉进行排名,以图神经网络量化整合用户信任与声誉,并将结合后的新矩阵不断校正以获取更准确的用户信任,以此对矩阵分解后得到的新评分模型更新,最终得到更准确度量的预测评分矩阵。运用Epinions数据集开展的相关实验表明:与同类方法比,TSR-GM算法对提高推荐精度有较好效果。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118