检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙志强[1] SUN Zhiqiang(Shangqiu Vocational and Technical College,Shangqiu,Henan 476000,China)
出 处:《山东商业职业技术学院学报》2023年第2期97-102,共6页Journal of Shandong Institute of Commerce and Technology
摘 要:对于存在噪声、杂波和漏检等不确定性因素的目标跟踪,多传感器概率假设密度滤波器通过多个传感器获取不同数目的量测,可以实现估计目标状态及其数目。然而,该滤波器的性能受制于新生目标强度的精确度。通过利用不同传感器的量测集迭代计算新生目标强度,提出一种基于自适应新生强度的多传感器多目标跟踪算法,以解决未知新生目标强度跟踪场景下概率假设密度滤波器的跟踪精度。数值结果表明,在均匀新生目标场景下所提算法具有较高的目标状态和数目估计精度。Under the target tracking of uncertain factors such as noise,clutter and missed detection,the multi-sensor probability hypothesis density filter can estimate the target state and its number by collecting different numbers of measurements through multiple sensors.However,the performance of the filter is limited by the accuracy of the nascent target intensity.By calculating the intensity of nascent targets using measurement sets of different sensors,this paper proposes a multi-sensor multi-target tracking algorithm based on the adaptive nascent intensity to solve the tracking accuracy of the probability hypothesis density filter in tracking scenarios with unknown birth target intensity.Numerical results show that the proposed algorithm has high accuracy of target state and number estimation under the uniform nascent target scenes.
关 键 词:新生目标强度 多传感器 概率假设密度 状态估计 目标数目
分 类 号:TN713[电子电信—电路与系统] TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249