检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈丽 张朝元 朱兴文 李梦巧 CHEN Li;ZHANG Chaoyuan;ZHU Xingwen;LI Mengqiao(College of Engineering,Dali University,Dali 671003,China;College of Mathematics and Computer,Dali University,Dali 671003,China)
机构地区:[1]大理大学工程学院,云南大理671003 [2]大理大学数学与计算机学院,云南大理671003
出 处:《成都理工大学学报(自然科学版)》2023年第1期122-128,共7页Journal of Chengdu University of Technology: Science & Technology Edition
基 金:国家自然科学基金项目(41664005,41464004,51809026);云南省地方本科高校(部分)基础研究联合专项资金项目(202001BA070001-082,2017FH001-006);大理大学科研发展基金项目(FZ2023YB035,FZ2023YB039)。
摘 要:为求解二维声波方程,本文结合空间高阶偏导数离散化的八阶NAD算子和时间导数离散化的三阶Runge-Kutta方法,推导出八阶NAD-RK算法。详细研究了八阶NAD-RK算法的计算效率和地震波数值模拟。结果显示:在达到相同精度下,八阶NAD-RK算法的内存需求约为八阶LWC算法的20%,约为八阶SG算法的25%;八阶NAD-RK算法的计算速度约为八阶LWC算法的5.8倍,约为八阶SG算法的1.52倍。地震波数值模拟实验进一步验证八阶NAD-RK算法数值频散压制效果。By combining the eighth-order NAD operator of the higher-order partial derivative discretization in space with the third-order Runge-Kutta discretization of the time derivative,the eighth-order NAD-RK algorithm is derived to solve the two-dimensional acoustic wave equation.Then,the computational efficiency of eighth order NAD-RK algorithm and seismic wave numerical simulation are studied.The results show that the memory requirement of the eighth-order NAD-RK algorithm is about 20%of that of the eighth-order LWC algorithm and about 25%of that of the eighth-order SG algorithm with the same accuracy.The computational speed of the eighth-order NAD-RK algorithm is about 5.8 times that of the eighth-order LWC algorithm and about 1.52 times that of the eighth-order SG algorithm.The numerical simulation experiment of seismic wave has further verified the numerical dispersion suppression effect of eighth-order NAD-RK algorithm.
关 键 词:声波方程 NAD算子 RUNGE-KUTTA方法 计算效率 数值模拟
分 类 号:P631[天文地球—地质矿产勘探] O241[天文地球—地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145