检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙成玉 焦龙[1] Sun Cheng-yu;Jiao Long(College of Chemistry and Chemical Engineering,Xi'an Shiyou University,Xi'an,Shaanxi 710065,China)
机构地区:[1]西安石油大学化学化工学院,陕西西安710065
出 处:《福建分析测试》2023年第2期11-15,共5页Fujian Analysis & Testing
基 金:西安石油大学研究生创新与实践能力培养项目(批准号:YCS21211036)资助。
摘 要:采用高光谱结合支持向量机方法(SVM)建立了不同产地丹参药材的鉴别方法。采集了6种不同产地丹参药材的高光谱;之后,分别使用均值中心化和Savitzky-Golay平滑滤波2种光谱预处理方法,结合SVM建立丹参产地鉴别模型;Savitzky-Golay平滑滤波方法结合SVM分类效果最佳,测试集分类准确率为97.50%,同时具有更高的真正率、命中率、和特异度。研究结果表明,建立的高光谱技术结合支持向量机方法步骤简便、准确、可靠,是一种很有前景的丹参药材分析鉴别方法。Hyperspectrum combined with support vector machine(SVM)method was established to identify Salvia miltiorrhiza samples from different geographical regions.In the experiment,the hyperspectra of 6 kinds of Salvia miltiorrhiza samples from different regions were collected.Then a discriminant model was established by SVM method combined with 2 different spectral preprocessing methods(Mean centralization and Savitzky-Golay smooth derivative).The Savitzky-Golay smooth derivative combined with SVM had the best discrimination effect,and the test set classification accuracy was 97.50%.The overall results showed that hyperspectral technique combined with support vector machine method was a promising method for the analysis and identification of Salvia miltiorrhiza.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.23