钢丝绳无损检测及其驱动技术研究进展  被引量:3

Research progress of wire rope nondestructive testing and driving technology

在线阅读下载全文

作  者:黄剑坤 周新年 周成军 巫志龙 HUANG Jian-kun;ZHOU Xin-nian;ZHOU Cheng-jun;WU Zhi-long(College of Transportation and Civil Engineering,Fujian Agriculture and Forestry University,Fuzhou Fujian 350007,China)

机构地区:[1]福建农林大学交通与土木工程学院,福建福州350007

出  处:《林业机械与木工设备》2023年第2期15-21,30,共8页Forestry Machinery & Woodworking Equipment

基  金:福建农林大学横向科技项目(KH200338A);福建农林大学科技创新专项基金(KFA17258A);2022年福建农林大学科技创新专项基金项目(KFb22104XA)。

摘  要:由于长期露天作业,工程索道表面易发生腐蚀,需要定期对其进行检查。简要阐述钢丝绳无损检测的发展及现状,目前工程索道检测方法主要有两类:一类是通过眼观、手摸与游标卡尺测量等传统方法对钢丝绳进行检测,此类方法无法得出钢丝绳内部的损伤状况,存在一定误差;另一类是通过超声波、电磁法等对钢丝绳内部进行探伤,但检测仪器需人为拖动检测,使用费时费力。针对这些不足,对缆索机器人相关资料进行检索,发现现有缆索机器人并不适用于索道上拖动检测仪器,但有可取之处,故对无损检测及缆索机器人的融合研究提出展望。Due to long-term exposure to the air,the surface of the ropeway is prone to corrosion,so it needs regular inspection.This paper briefly describes the development and current situation of wire rope nondestructive testing.At present,the methods of engineering ropeway detection are mainly divided into two categories.One is to detect the wire rope by traditional methods such as eye observation,hand touch and vernier calipers.However,this kind of method can not get the damage inside the wire rope,and there is some error.The other is through ultrasonic,electromagnetic method and so on to the wire rope internal flaw detection.However,these testing instruments need to be manually dragged and tested,which is time-consuming and laborious to use.In view of these shortcomings,the data of the cable robot was reviewed.Found that today's cable line robots are not suitable for towing inspection instruments along the ropeway.But there are redeeming features.At the end of the paper,the prospect of the fusion of nondestructive testing and cable robots is presented.

关 键 词:工程索道 无损检测 钢丝绳 缆索机器人 

分 类 号:TG115.28[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象