基于支持向量机的船舶交通流量预测方法  被引量:2

Ship traffic flow prediction method based on support vector machine

在线阅读下载全文

作  者:曾晓晴 ZENG Xiao-qing(Jiangsu Shipping College,Nantong 226010,China)

机构地区:[1]江苏航运职业技术学院,江苏南通226010

出  处:《舰船科学技术》2023年第5期160-163,共4页Ship Science and Technology

基  金:江苏航运职业技术学院科研课题(HYKY/2020B03)。

摘  要:提升航道和港口资源的高效、合理利用,需精准掌握船舶交通流量情况。为此,本文提出基于支持向量机的船舶交通流量预测方法。该方法以船舶交通流量数据为基础,经预处理后将其作为采用支持向量机的输入量,通过输入量和输出量之间的高维映射,预测船舶交通流量;通过鲸鱼优化算法优化支持向量机的核参数和惩罚项参数;通过迭代寻优获取最优的参数结果,以此保证舰船交通流量预测结果的精准程度。测试结果表明:该方法能可靠完成不同航行环境下的船舶交通流量预测,均等系数均在0.019以下;中心可依据预测结果对船舶进行管理,高效、合理实现港口资源利用,减少船舶等待进港时间。To improve the efficient and reasonable use of channel and port resources by port departments,it is necessary to accurately grasp the ship traffic flow.Therefore,a ship traffic flow prediction method based on support vector machine is proposed.This method is based on the ship traffic flow data,which is preprocessed as the input of support vector machine,and predicts the ship traffic flow through the high-dimensional mapping between the input and output;The whale optimization algorithm is used to optimize the kernel parameters and penalty parameters of the support vector machine,and the optimal parameter results are obtained through iterative optimization to ensure the accuracy of the ship traffic flow prediction results.The test results show that this method can reliably predict the ship traffic flow under different navigation environments,with the equalization coefficient below 0.019.The port dispatching center can dispatch ships according to the prediction results,efficiently and reasonably realize the utilization of port resources,reduce the waiting time for ships to enter the port,and improve the throughput of ships.

关 键 词:支持向量机 船舶交通 流量预测 高维映射 参数优化 资源利用 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象