检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋保建[1] 王若浩 马良宇 魏振国[1] 贾喻博 刘慧卿[3] SONG Baojian;WANG Ruohao;MA Liangyu;WEI Zhenguo;JIA Yubo;LIU Huiqing(SINOPEC Henan Oilfield Company,Nanyang 473400,Henan,China;Tianjin Branch of CNOOC Ltd.,Tianjin 300459,China;China University of Petroleum(Beijing),Beijing 102200,China)
机构地区:[1]中石化河南油田分公司 [2]中海石油(中国)有限公司天津分公司 [3]中国石油大学(北京),北京市102249
出 处:《石油钻采工艺》2022年第6期777-783,共7页Oil Drilling & Production Technology
摘 要:稠油油藏蒸汽吞吐过程中汽窜的产生与油藏地质和开发工程等因素有关,目前识别汽窜的方式局限于油藏工程、数值模拟等,此类方法无法准确判别各因素的不确定性和相关性,机器学习方法可识别海量数据间的隐含关系,准确度高且模型易维护。分析了汽窜的影响因素,构建基础数据集后对数据进行特征工程处理,包括数据重构、缺失值处理、维度转换及相似性分析,建立了汽窜预测特征属性集;采取Wrapper方法、Embedded方法、主成成分分析法对数据集进行降维处理,形成3套不同的特征组合方案;分别采用随机森林、SVM、神经网络和XGBoost算法建立汽窜预测模型,给出不同模型的预测准确率和预测汽窜通道分布。研究结果表明:注汽强度、层位渗透率极值和邻井距离对汽窜的影响程度最大,表现最好的组合模型是:PCA数据集+XGBoost模型,该方案在训练集上的准确率为97.20%,在验证集上的准确率为96.11%,实现了对汽窜的精准预警。Occurring of steam channeling during cyclic steam injection of heavy oil reservoirs is attributed to both geological and engineering factors.The current methods for identifying steam channeling are limited to the reservoir engineering approach and numerical simulation,which fail to capture the uncertainty and correlation between factors.Nevertheless,machine learning can recognize implicit correlations among massive data and has high accuracy and low maintenance.This research investigated the factors affecting steam channeling and performed the feature engineering processing after building the base dataset,including data reconstruction,dealing with missing values,dimension transformation and similarity analysis to build the feature attribute set for steam channeling.Subsequently,the dimensionality reduction of the dataset was carried out via the Wrapper method,Embedded method and principal component analysis to deliver three schemes of feature combinations.The steam channeling prediction models were built using the random forest,support vector machine(SVM),neural network,and XGBoost algorithms,respectively,of which the prediction accuracies and predicted steam channeling pathway distributions were presented.The research showed that the steam injection intensity,permeability extreme value of layers and well spacing have the largest influences on steam channeling.The dataalgorithm combination with the best performance is the PCA dataset with the XGBoost model,which precisely predicts steam channeling with an accuracy of 97.20%for the training set and 96.11%for the validation set.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63