检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shi Meng Guang Chen Dan Zhou Shuang Meng
机构地区:[1]Key Laboratory of Traffic Safety on Track of Ministry of Education,School of Traffic&Transportation Engineering,Central South University,Changsha 410075,Hunan,China [2]Joint International Research Laboratory of Key Technology for Rail Traffic Safety,School of Traffic&Transportation Engineering,Central South University,Changsha 410075,Hunan,China [3]National&Local Joint Engineering Research Center of Safety Technology for Rail Vehicle,School of Traffic&Transportation Engineering,Central South University,Changsha 410075,Hunan,China
出 处:《Transportation Safety and Environment》2022年第4期64-75,共12页交通安全与环境(英文)
基 金:the National Numerical Wind Tunnel Project(Grant No.NNW2018-ZT1A02).
摘 要:The effect of ground condition on unsteady aerodynamic performance of a maglev train was numerically investigated with an IDDES(Improved Delayed Detached Eddy Simulation) method. The accuracy of the numerical method has been validated by wind tunnelexperiments. The flow structure, slipstream and aerodynamic force around the train under stationary and moving ground conditionswere compared. Track and ground play a leading role in the influence of wake vortex structure;the flow structure around the trainis more complex under the stationary ground boundary condition. Near the nose point of the head and tail vehicles, the peak valueof the slipstream under the condition of moving ground is slightly higher than that under stationary ground. In the wake area, theeffect of themain vortex structure on both sides of the tail vehicle and the trackmakes the vortex structure in the wake area strongerthan that under moving ground, the slipstream peak is larger and the locus thereof is further forward. In the horizontal direction, thevortex desorption energy near the nose tip of the train is higher on stationary ground, while the vortex desorption energy far fromthe nose tip of the train is higher on moving ground. Compared with the static ground boundary condition, the resistance coefficientof the head and tail of a maglev train increases by 3.45% and 3.31% respectively under the moving ground boundary condition. Thelift coefficient decreases by 157.78% and 5.13%, respectively.
关 键 词:Improved delayed detached eddy simulation(IDDES) maglev train ground effect SLIPSTREAM wake flow
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170