检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鹏 陈琪锋[1] LI Peng;CHEN Qifeng(School of Aeronautics and Astronautics,Central South University,Changsha 410083)
出 处:《飞控与探测》2023年第1期24-31,共8页Flight Control & Detection
基 金:国家自然科学基金(62073343)。
摘 要:针对编队卫星成员数量较多时,编队重构规划考虑碰撞规避会带来巨大的计算开销。为降低计算开销和提升优化效率,基于CW方程和双脉冲轨道机动策略,建立了能够快速预测编队卫星重构过程最短距离的多种代理模型,并基于三种不同大小的训练集,从模型精度和效率两方面进行了对比。结果表明,克里金(KRG)模型在各种代理模型中精度最高,而且随着训练量的增加,KRG和人工神经网络(ANN)模型的性能得到了明显改善,模型精度得到了一定的保证。研究还发现,尽管KRG模型预测时间高于其他代理模型,但与真实模型相比,其耗时仍然很短,因此可用于提高考虑避碰约束时卫星编队重构轨迹优化的效率。When the number of formation satellites is large,the formation reconfiguration planning brings the huge computational cost considering collision avoidance.In order to reduce the computational overhead and improve the optimization efficiency,based on the CW equation and the dual pulse orbit maneuver strategy,a variety of surrogate models that can quickly predict the shortest distance in the formation satellite reconfiguration process are established.Based on three training sets of different sizes,the model accuracy and efficiency are compared.The result shows that Kriging(KRG)model has the highest accuracy among various surrogate models.Moreover,with the increase of training,the performance of KRG and artificial neural network(ANN)models has been significantly improved,and the accuracy of the model is guaranteed.It is also found that although the prediction time of KRG model is higher than that of other surrogate models,its time-consuming is still very short compared with the real model,so it can be used to improve the efficiency of satellite formation reconfiguration trajectory optimization considering collision avoidance constraints.
关 键 词:卫星编队 编队重构 碰撞避免 最短距离 代理模型
分 类 号:V448.2[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7