检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张茼茼 刘恒 ZHANG Tongtong;LIU Heng(School of Computer Science and Technology,Anhui University of Technology,Anhui Maanshan 243000,China)
机构地区:[1]安徽工业大学计算机科学与技术学院,安徽马鞍山243000
出 处:《重庆工商大学学报(自然科学版)》2023年第2期73-78,共6页Journal of Chongqing Technology and Business University:Natural Science Edition
基 金:安徽省自然科学基金资助(2008085MF190);安徽省高校协同创新项目(GXXT-2019-018)。
摘 要:本研究针对现有图像修复方法不能有效地分离结构和纹理信息,修复结果往往会出现边界模糊、结构扭曲等伪影问题,提出了基于潜在特征重构和注意力机制的人脸图像修复方法。人脸图像修复方法分为两阶段,第一阶段,通过结构重建器网络提取样式向量,按照StyleGAN所述的原理分为粗尺度特征、中尺度特征和精细特征三组,插入到预先训练好的StyleGAN生成器中,产生初步的修复结果;第二阶段通过构建纹理生成网络并使用上下文注意力机制,注意力分数由注意力计算模块计算,注意力转移模块根据较高级别特征图和注意力分数来填充较低级别特征图中的对应缺失区域,以细化上一阶段初步的人脸修复结果。在CelebA-HQ数据集上的训练并进行测试,本文的方法在定量和定性分析两个方面均优于现有方法。因此,基于潜在特征重构和注意力机制的人脸图像修复方法能够有效地修复缺损人脸图像,大大减少了边界过度平滑和存在纹理伪影的问题。In this study,a face image restoration method based on latent feature reconstruction and attention mechanism was proposed to address the problem that existing image restoration methods cannot effectively separate structure and texture information,and the restoration results often show artifacts such as blurred boundaries and distorted structures.The face image restoration method was divided into two stages.In the first stage,the style vectors were extracted through the structural reconstruction network and divided into three groups of coarse-scale features,medium-scale features,and fine features according to the principles described by StyleGAN,which were inserted into the pre-trained StyleGAN generator to produce initial restoration results.In the second stage,by building a texture generation network and using a contextual attention mechanism,the attention score was calculated by the attention calculation module,and the attention transfer module filled in the corresponding missing regions in the lower-level feature images based on the higher level feature images and the attention scores to refine the initial face restoration results from the previous stage.Trained and tested on the CelebA-HQ dataset,the method in this paper outperformed existing methods in both quantitative and qualitative analysis.Thus,the face image restoration method based on latent feature reconstruction and attention mechanism can effectively repair defective face images,greatly reducing the problems of excessive smooth boundaries and the presence of texture artifacts.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.34.100