(2+1)维变系数非线性手性Schrödinger方程的新精确解  

New exact solutions of(2+1)dimensional nonlinear chiral Schrödinger equations with variable coefficients

在线阅读下载全文

作  者:赵宇 孙峪怀 ZHAO Yu;SUN Yuhuai(School of Mathematical Sciences,Sichuan Normal University,Chengdu,Sichuan 610066,China)

机构地区:[1]四川师范大学数学科学学院,四川成都610066

出  处:《内江师范学院学报》2023年第4期34-38,共5页Journal of Neijiang Normal University

基  金:国家自然科学基金资助项目(11371267);四川省教育厅自然科学基金重点项目(2012ZA135)。

摘  要:在一些实际问题中,变系数非线性演化方程比其反常系数方程更能反映介质的非均匀性和边界的非均匀性,因此研究变系数非线性演化方程具有重要意义.对(2+1)维变系数非线性手性Schrödinger方程进行分数阶复变换转化为常微分方程,分离实部和虚部后再分别令其为零,接着利用(G′/G^(2))-展开法,求得了一系列带参数的精确行波通解,其中包括有理函数解、三角函数解和双曲函数解.最后当参数取特殊值时进一步得到扭结波、周期波、孤立波解等一系列新的精确解.Variable-coefficients nonlinear evolution equations offer us with more real aspects in the inhomogeneities of media and non-uniformities of boundaries than their counter constant-coefficients in some real-world problems,so it is of great significance to study the nonlinear evolution equation with variable coefficients.Firstly the(2+1)dimensional nonlinear chiralSchrödinger equation with variable coefficients is transformed into an ordinary differential equation by the fractional complex transformation.Then,the real part and imaginary part are separated and set to zero respectively.By using the(G'/G^(2))-expansion method,a series of general exact traveling wave solutions with parameters are obtained,which include rational function solutions,trigonometric function solutions and hyperbolic function solutions.Finally,when the parameter takes a special value,the kink wave solution,periodic wave solution and solitary wave solution are worked out in turn.

关 键 词:(G′/G^(2))-展开法 变系数非线性手性Schrödinger方程 精确解 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象