检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘艺多 姬红兵[1] 张永权[1] LIU Yiduo;JI Hongbing;ZHANG Yongquan(School of Electronic Engineering,Xidian University,Xi’an 710077,China)
机构地区:[1]西安电子科技大学,西安710077
出 处:《电子与信息学报》2023年第4期1303-1312,共10页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61871301);中国博士后科学基金(2020T130494,2018M633470);中央高校基本科研业务费专项资金(XJS210211)。
摘 要:高分辨率雷达监视系统可观测到区域内不同形状的多个扩展目标,可靠的形状估计有利于提高扩展目标跟踪性能,并可作为战场态势评估的重要依据。该文针对不同形状多扩展目标跟踪问题,提出一种基于联合似然函数的广义标签多伯努利(JL-GLMB)滤波器,可实现目标数目、航迹以及形状的精确估计。首先,将目标形状建模为星凸集,并利用非线性量测变换滤波器更新GLMB分布中的高斯分量,有效提高扩展目标状态估计精度。然后,通过对数加权融合策略,构造联合似然函数,综合衡量扩展目标和量测单元之间的相似程度。最后,基于吉布斯采样,提出快速计算扩展目标状态后验概率密度的方法,有效提高数据关联的准确率和计算效率。仿真实验结果表明,所提滤波器能够有效估计不同形状的多扩展目标状态,且在杂波环境下具有稳定的势估计。High-resolution radar systems monitor multiple extended targets with different shapes in a surveillance area.Reliable shapes estimation can effectively improve tracking performance and are crucial to battle-field situation evaluations.In this paper,a Joint Likelihood based Generalized Labeled Multi-Bernoulli(JL-GLMB)filter is proposed to estimate accurately the number of targets,target tracks,and target shapes.Firstly,the extended target is modeled as a star-convex set,and Gaussian components in the GLMB density are updated by the measurement transformation filter to improve the accuracy of state estimation.Then,a joint likelihood function is constructed by log-weighted fusion strategy to measure comprehensively the similarity between extended target and measurement cell.Finally,a fast approximation method for posterior probability density is proposed based on Gibbs sampling,which improves the accuracy and efficiency of the data association.Simulation results show that the proposed algorithm can effectively estimate multiple extended target states of different shapes,and provide stable cardinality estimation in the clutter environment compared to traditional multiple extended target tracking.
关 键 词:多扩展目标跟踪 随机有限集 星凸集模型 非线性估计
分 类 号:TN953[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117