检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张少强[1] 李荔瑄 谢林娟 吕庆 ZHANG Shaoqiang;LI Lixuan;XIE Linjuan;LYU Qing(College of Computer and Information Engineering,Tianjin Normal University,Tianjin 300387,China)
机构地区:[1]天津师范大学计算机与信息工程学院,天津300387
出 处:《天津师范大学学报(自然科学版)》2023年第2期1-10,73,共11页Journal of Tianjin Normal University:Natural Science Edition
基 金:国家自然科学基金资助项目(61572358);天津市应用基础与前沿技术研究计划重点资助项目(19JCZDJC35100);天津市自然科学基金青年基金资助项目(18JCQNJC74100).
摘 要:单细胞RNA测序(scRNA-seq)数据插补方法用于解决scRNA-seq数据观测中存在的大量“漏失”(dropout)噪音,改善下游分析,scRNA-seq数据插补方法设计是单细胞数据研究的热点方向之一.本文首先对20种主要的scRNA-seq数据插补方法进行介绍,包括基于模型的插补方法(6种)、基于平滑的插补方法(3种)、基于深度学习的插补方法(8种)和基于低秩矩阵的插补方法(3种),分析了各类方法的优势和缺点;其次,简要综述了插补方法比较研究的相关成果;然后,针对4种下游数据分析评估了以上方法(除scGNN外)的性能;最后,分析目前scRNA-seq插补所面临的挑战,并指出新的研究方向.Imputation method for single-cell RNA sequencing(scRNA-seq)data is used for solving large numbers of dropout noise observed in scRNA-seq data and improving the downstream analysis.Imputation method design for scRNA-seq data is one of the hot research directions of single cell data.Firstly,20 kinds of main imputation methods are introduced,including model based imputation methods(six kinds),smoothing based imputation methods(three kinds),deep learning based imputation me-thods(eight kinds)and low rank matrix based imputation methods(three kinds),and the advantages and disadvantages of each class of method are analyzed.Then the results of comparative research on imputation methods are briefly reviewed.And then the performances of the above methods(except for scGNN)are evaluated by four kinds of downstream data analysis.Finally,the challenges faced by current scRNA-seq imputation methods are analyzed,and new research directions are pointed out.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112