检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廉西猛[1] LIAN Xi-meng(Geophysical Research Institute of Shengli Oilfield Branch Company,SINOPEC,Dongying 257022,China)
机构地区:[1]中国石油化工股份有限公司胜利油田分公司物探研究院,东营257022
出 处:《科学技术与工程》2023年第8期3168-3176,共9页Science Technology and Engineering
基 金:中国石油化工股份有限公司项目(P21066-2,P22185)。
摘 要:地震勘探技术发展早已进入TB(terabytes)级数据时代,并逐步迈向PB(petabytes)级。为提升海量数据处理效率,将地震数据处理算法进行并行化是一种广泛采用的手段。但是一些复杂度较高的算法,诸如地震数据重建类方法等,并行化难度较大,加速效果不理想。Spark作为一种面向大数据处理的通用分布式并行计算技术,可以应用于并可简化地震数据处理算法并行化过程。借助于Spark的优势,通过两个实例讨论了基于Spark的地震数据重建并行化方法,提出了对于具有复杂输入输出组织数据方式的算法的并行化方法,提升了算法效率。研究成果为该类算法的Spark并行化开发提供了有益借鉴。With the development of seismic exploration technology,more and more seismic data of terabytes or even petabytes are acquired and need to be processed.To improve the efficiency of massive data processing,parallelization of processing algorithms is a widely used solution.However,some algorithms with high complexity,such as data reconstruction methods,are so difficult to be parallelized that desired acceleration effect cannot be achieved.Fortunately,Spark,a general distributed parallel computing technology for big data processing,can make the parallelization of seismic data processing algorithms easier and more effective.By virtue of the advantages of Spark,the parallelization methods of seismic data reconstruction algorithms were discussed with two sample algorithms and approaches to deal with complicated organizations of input or output data were proposed.Efficiency of the algorithm were significantly improved by applying these methods.The research results provide useful references for the development of Spark parallelization for this kind of algorithms.
关 键 词:地震数据重建 Spark技术 并行 面元均化 五维规则化
分 类 号:P315.9[天文地球—地震学] TP399[天文地球—固体地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.11.217