检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐微 汤俊伟 张驰 XU Wei;TANG Jun-wei;ZHANG Chi(Hubei Provincial Engineering Research Center for Intelligent Textile and Fashion,Wuhan 430200,China;School of Computer Science and Artificial Intelligence,Wuhan Textile University,Wuhan Hubei 430200,China)
机构地区:[1]纺织服装智能化湖北省工程研究中心,湖北武汉430200 [2]武汉纺织大学计算机与人工智能学院,湖北武汉430200
出 处:《计算机仿真》2023年第3期447-452,共6页Computer Simulation
摘 要:针对移动机器人存在的多个目标位置进行点对点路径规划的问题,对传统的A^(*)算法进行了改进,同时结合模拟退火算法来对多个目标位置实现全局最优的路径规划。进一步针对移动机器人的避障问题,结合多目标规划算法对动态窗口算法进行改进,在完成实时动态路径规划的同时避免未知障碍物占据全局路径,实现局部避障的功能。仿真结果表明,提出的改进算法能够有效地缩短路径距离,实现障碍物的实时避障,证明了改进方法具有较高的实用性。Aiming at the problem of point-to-point path planning for multiple target locations of mobile robots,the traditional A^(*)algorithm was improved,and the simulated annealing algorithm was combined to achieve global optimal path planning for multiple target locations.Further,aiming at the obstacle avoidance problem of mobile robots,the dynamic window algorithm was improved by combining the multi-objective planning algorithm,so as to avoid unknown obstacles occupying the global path while completing the real-time dynamic path planning,and realized the local obstacle avoidance function.The simulation experiment results show that the improved algorithm can effectively shorten the path distance and realize the real-time obstacle avoidance,which proves that the method has high practicability.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3