检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈梦清 陈洋 陈志环[1,2] 赵新刚 CHEN Meng-Qing;CHEN Yang;CHEN Zhi-Huan;ZHAO Xin-Gang(Institute of Robot and Intelligent System,Wuhan University of Science and Technology,Wuhan 430081;Engineering Research Center for Metallurgical Automation and Measurement Technology of Ministry of Education,Wuhan 430081;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016)
机构地区:[1]武汉科技大学机器人与智能系统研究院,武汉430081 [2]冶金自动化与检测技术教育部工程研究中心,武汉430081 [3]中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳110016
出 处:《自动化学报》2023年第4期718-730,共13页Acta Automatica Sinica
基 金:国家自然科学基金(61573263,62073250)资助。
摘 要:由无人机(Unmanned aerial vehicles,UAV)和地面移动机器人组成的异构机器人系统在协作执行任务时,可以充分发挥两类机器人各自的优势.无人机运动灵活,但通常续航能力有限;地面机器人载荷多,适合作为无人机的着陆平台和移动补给站,但运动受路网约束.本文研究这类异构机器人系统协作路径规划问题.为了降低完成任务的时间代价,提出一种由蚁群算法(Ant colony optimization,ACO)和遗传算法(Genetic algorithm,GA)相结合的两步法对地面机器人和无人机的路线进行解耦,同时规划地面机器人和无人机的路线.第1步使用蚁群算法为地面机器人搜索可行路线.第2步对无人机的最优路径建模,采用遗传算法求解并将无人机路径长度返回至第1步中,用于更新路网的信息素参数,从而实现异构协作系统路径的整体优化.另外,为了进一步降低无人机的飞行时间代价,研究了无人机在其续航能力内连续完成多任务的协作路径规划问题.最后,通过大量仿真实验验证了所提方法的有效性.The heterogeneous robot system,composed of unmanned aerial vehicles(UAVs)and ground mobile robots,can give full play to the respective advantages of the two types of robots when performing tasks in cooperation.UAVs have the characteristics of flexibility,but they usually have limited endurance.Ground robots can bear large loads and are suitable for use as landing platforms and mobile replenishment stations for UAVs,but their movement is constrained by the road network.This paper studies the cooperative path planning of the heterogeneous robot systems.In order to reduce the time cost of the task,this paper proposes a two-step strategy combining ant colony optimization(ACO)and genetic algorithm(GA)to decouple the routes of mobile robot and UAV,and plans the routes of mobile robot and UAV at the same time.In the first step,ant colony optimization is used to search for feasible routes of the mobile robot.In the second step,we derive the model of the UAV's optimal path and use the genetic algorithm to solve it.The UAV path length is returned to the first step to update the pheromone in the road network.Then,we realize the overall optimization of the heterogeneous collaborative system path.In order to further reduce the flight time cost of UAVs,this paper also studies the problem of cooperative path planning for UAVs to continuously complete multiple tasks within their endurance capabilities.Finally,a large number of simulation experiments verify the effectiveness of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49