检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周俊 赵涛[1] Zhou Jun;Zhao Tao(College of Electrical Engineering,Sichuan University,Chengdu 610065,Sichuan,China)
出 处:《计算机应用与软件》2023年第4期68-74,79,共8页Computer Applications and Software
基 金:四川省科技计划项目(2020YFG0115);成都市科技计划项目(2019-YF05-00958-SN)。
摘 要:针对轮式移动机器人的轨迹跟踪问题,提出一种广义二型模糊神经网络控制方法。模糊控制可以弥补机器人动态特性中的非线性和不确定性因素,而广义二型模糊系统能更有效地处理外界干扰和参数扰动等不确定性,广义二型模糊神经网络系统结合了神经网络强大的非线性拟合能力和自学习能力,能够更有效地对规则库中可能存在的不确定性进行建模。它可以进一步提高控制精度,达到跟踪的目的。仿真结果表明,与PID控制器、模糊控制器和一型模糊神经网络控制器相比,该方法能更好地跟踪轮式移动机器人的运动轨迹且拥有更好的抗干扰能力。Aimed at the trajectory tracking problem of wheeled mobile robots,a general type-2 fuzzy neural network control method is proposed.Fuzzy control could make up for the non-linear and uncertain factors in the dynamic characteristics of robot,while the general type-2 fuzzy system could deal with the uncertainties such as external interference and parameter disturbance more effectively.The general type-2 fuzzy neural network system combined the strong non-linear fitting ability and self-learning ability of neural network,which could more effectively model the uncertainty that may exist in the rule base.It could further improve the control accuracy and achieve the purpose of tracking.The simulation results show that compared with PID controller,fuzzy controller and type-1 fuzzy neural network controller,this method can better track the trajectory of wheeled mobile robot and has better anti-interference ability.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200