检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈素根 石婷 CHEN Sugen;SHI Ting(School of Mathematics and Physics,Anqing Normal University,Anqing,Anhui 246133,China;Key Laboratory of Modeling,Simulation and Control of Complex Ecosystem in Dabie Mountains of Anhui Higher Education Institutes,Anqing,Anhui 246133,China;International Joint Research Center of Simulation and Control for Population Ecology of Yangtze River in Anhui Province,Anqing,Anhui 246133,China)
机构地区:[1]安庆师范大学数理学院,安徽安庆246133 [2]安徽省大别山区域复杂生态系统建模、仿真与控制重点实验室,安徽安庆246133 [3]安徽省皖江流域种群生态模拟与控制国际联合研究中心,安徽安庆246133
出 处:《计算机科学与探索》2023年第5期1157-1167,共11页Journal of Frontiers of Computer Science and Technology
基 金:国家自然科学基金(61702012);安徽省自然科学基金(1908085MF195,2008085MF193);安徽省高校自然科学研究重点项目(KJ2020A0505)。
摘 要:回归问题是模式识别与机器学习领域的基本问题之一,孪生支持向量回归机(TSVR)是在支持向量回归机(SVR)基础上发展而来的一种处理回归问题的新算法,它在处理无噪声数据时表现出较好的性能,但在处理有噪声数据时往往性能不佳。为了降低噪声对孪生支持向量回归机性能的影响,结合ε-不敏感损失函数与Huber损失函数构造了混合Hε损失函数,该损失函数可以有效地适应于不同分布类型的噪声;然后基于混合Hε损失函数和结构风险最小化(SRM)原则提出了一种鲁棒的孪生支持向量回归机(Hε-TSVR),并在原始空间中利用牛顿迭代法求解模型。分别在有噪声和无噪声的人工数据集、UCI数据集上进行实验,与支持向量回归机和孪生支持向量回归机等算法比较,实验结果验证了所提算法的有效性。Regression problem is one of the basic problems in the field of pattern recognition and machine learning.Twin support vector regression(TSVR)is a new algorithm to deal with regression problems developed on the basis of support vector regression(SVR).It has good performance in dealing with noiseless data,but poor performance in dealing with noisy data.In order to reduce the influence of noise on the performance of TSVR,the mixed Hεloss function is constructed by combiningε-insensitive loss function and Huber loss function,which can be effectively adapted to the noise of different distributions.Then,a robust twin support vector regression(Hε-TSVR)is proposed based on the mixed Hεloss function and the principle of structural risk minimization(SRM),and the model is solved by Newton iterative method in the primal space.Experiments are carried out on some noisy and noiseless artificial datasets and UCI datasets respectively,and the experimental results verify the effectiveness of the proposed algorithm compared with SVR and TSVR,etc.
关 键 词:模式识别 支持向量回归机(SVR) 孪生支持向量回归机(TSVR) 损失函数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15