检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:单刚[1] 张珩 田野[1] 徐述雄[1] 安凌悦 罗光恒 Shan Gang;Zhang Heng;Tian Ye;Xu Shuxiong;An Lingyue;Luo Guangheng(Department of Urology,Guizhou Provincial People’s Hospital,Guiyang 550002,China;Medical College of Guizhou University,Guiyang 550025,China;Central Laboratory of Urology,Guangzhou Medical University,Guangzhou 511436,China)
机构地区:[1]贵州省人民医院泌尿外科,贵阳550002 [2]贵州大学医学院生物医学系,贵阳550025 [3]广州医科大学泌尿外科中心实验室,广州511436
出 处:《中华实验外科杂志》2023年第2期346-348,共3页Chinese Journal of Experimental Surgery
基 金:国家自然科学基金(81860141);贵州省卫健委基金(Gzwjkj2017-1-032);贵州省人民医院国家自然科学基金培育基金(黔科合平台人才[2017]5724-3);贵州省人民医院国家自然科学基金培育基金(黔科合平台人才[2018]5764-01)。
摘 要:目的通过生物信息挖掘技术对肾透明细胞癌(ccRCC)基因表达谱进行分析后得到差异基因及所涉及生物学信号通路。方法使用生物信息挖掘技术对GSE36895、GSE46699、GSE53757基因表达谱芯片数据集进行分析后取交集得到差异表达基因(DEGs),后使用DAVID数据库对DEGs进行GO及京都基因及基因组百科全书(KEGG)富集分析,使用STRING数据库及Cytoscape的cytoHubba应用程序得到PPI互作网络及关键基因并进行排序,最后将所得关键基因在TCGA及GTEx数据库中进行验证并进行生存分析。结果通过对GEO数据库ccRCC的3个数据集使用R软件等工具进行分析,934个DEGs,其中上调504个,下调430个。通过GO功能富集分析及KEGG通路分析表明这些基因富集在免疫应答、炎性反应、白细胞迁移及血管生成等功能及相关信号通路上。构建DEGs的PPI互作网络并通过cytoHubba筛选出最重要的10个基因并与TCGA及GTEx数据库数据进行对比,研究结果显示趋化因子家族相关基因在ccRCC发生发展中起重要作用。结论趋化因子家族相关基因在ccRCC发生发展中起重要作用。Objective To investigage the differential genes and biological signaling pathways involved in clear cell renal cell carcinoma(ccRCC)by analyzing the gene expression profile through bioinformatics mining technology.Methods The microarray data sets of GSE36895,GSE46699 and GSE53757 gene expression profiles were analyzed by bioinformation mining technology,and then the cross sets were obtained to find differentially expressed genes(DEGs).Therereafter,the David database was used for gene ontology(GO)and KOBAS-kyoto encyclopedia of genes and genomes(KEGG)enrichment analysis,and the STRING database and cytoHubba of cytoscape gets were used to obtain protein-protein interaction(PPI)interaction network and hub genes.The hub genes were verified and the effect of these hub genes on the survival of ccRCC was analyzed in TCGA and GTEX database.Results By bioinformatics analysis on three data sets of ccRCC in GEO database using R software and other tools,934 DEGs in total were found,including 504 up-regulated and 430 down-regulated.Through the analysis of GO function enrichment and KEGG pathway,we found that these genes were enriched in immune response,inflammatory response,leukocyte migration,angiogenesis and other functions and other signals.The PPI interaction network of DEGs was constructed and the most important 10 genes were screened out by cytohubba and compared with TCGA and GTEX database data.Our study found that chemokine family genes played an important role in the occurrence and development of prostate cancer.Conclusion Through deep biological information mining,it was found chemokine family related genes play an important role in the development of ccRCC.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.206.232