检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹晓璐 卢富男 朱翔 翁立波 卢书芳[1] 高飞[1] CAO Xiao-lu;LU Fu-nan;ZHU Xiang;WENG Li-bo;LU Shu-fang;GAO Fei(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
机构地区:[1]浙江工业大学计算机科学与技术学院,浙江杭州310023
出 处:《浙江大学学报(工学版)》2023年第5期939-947,共9页Journal of Zhejiang University:Engineering Science
基 金:浙江省自然科学基金资助项目(LQ22F020008);浙江省尖兵领雁研发攻关计划项目(2022C01120).
摘 要:针对现有服装图像生成方法多样性不足、兼容性欠缺的问题,提出新的基于草图的兼容性服装生成方法.允许用户输入草图和参考服装图,生成多样化的服装图像,使得内容上忠于草图的描述,风格上与参考服装兼容.设计由2个编码网络和1个解码网络构成的新颖网络框架,其中编码网络用于提取参考服装和用户绘制草图的特征,解码用于生成图像.构建真实性判别网络和兼容性判别网络,设计由对抗损失、重建损失、感知损失、风格损失和边缘损失相结合的多项联合损失函数,引导网络生成逼真的服装图像,并与参考服装图像的风格兼容.定量实验结果表明,所提方法提高了图像生成质量,整体表现优于基线方法;定性实验结果表明,所提方法生成图像更符合草图描述,可以生成多样化的结果.A new sketch-based method for generating compatible clothing was proposed,aiming at the lack of diversity and compatibility of the existing clothing image generation methods.Users were allowed to input both sketches and reference clothing drawings to generate diverse clothing images,and the generated images were faithful to the description of the sketch in content and compatible with the reference clothing in style.A novel network framework consisting of two encoding networks and one decoding network was designed.Encoding networks were used to extract the features of the reference clothing and user drawn sketches,and the decoding network was used to generate images.A decoding network was constructed to generated images.The authenticity discrimination network and the compatibility discrimination network were constructed.Several joint loss functions which were composed of the adversarial loss,reconstruction loss,perception loss,style loss and edge loss,were designed to guide the network to generate realistic clothing images,which compatible with the style of reference clothing images.Quantitative experimental results showed that the proposed method improved the quality of generated images,and the overall performance was better than the baseline methods.Qualitative experimental results showed that the proposed method was consistent with the sketch description and could generate the diverse results.
关 键 词:服装图像生成 深度学习 生成对抗网络 服装兼容性 图像翻译
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7