检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴勇 仝鑫 高冠东[1,2] 马国富[1] Wu Yong;Tong Xin;Gao Guandong;Ma Guofu(Dept.of Information Management,The National Police University for Criminal Justice,Baoding Hebei 071001,China;The Centre of Data Science&Intelligent Correction Technology,The National Police University for Criminal Justice,Baoding Hebei 071001,China;School of Information Technology&Cyber Security,People’s Public Security University of China,Beijing 100038,China)
机构地区:[1]中央司法警官学院信息管理系,河北保定071001 [2]中央司法警官学院数据科学与智能矫正技术研究中心,河北保定071001 [3]中国人民公安大学信息技术与网络安全学院,北京100038
出 处:《计算机应用研究》2023年第5期1389-1395,共7页Application Research of Computers
基 金:教育部第二批新工科研究与实践资助项目(E-GKRWJC20202905);国家社会科学基金重点项目(20AZD114);河北省社会科学基金资助项目(HB21ZZ002);河南省重点研发与推广项目(212102210165)。
摘 要:针对符号二值网络的节点异质性及三角形形式平衡理论不适用性的问题,提出一种基于潜在类分配及对比学习增强的符号二值图神经网络模型,其通过同质和异质双空间的互相补充来充分提取网络的隐式和显式信息。在同质空间,采用可学习的潜在组对节点进行分配并将节点看做多个潜在组的组合,然后通过训练来自动挖掘节点间的信息。在异质空间,对节点邻居进行有方向区分的注意力聚合,然后采用网络重建的互信息对比学习来引导聚合过程以获得表达能力更强的表示向量。在符号链接预测任务上与多种相关模型进行对比实验,实验结果显示所提出的模型在四个真实数据集上采用四种评价指标获取的16个评价结果中,12个评价结果可以取得最优值,验证了所提出模型的有效性。To address the problems of node heterogeneity and inapplicability of triangular form balance theory in signed bipartite network modeling,this paper proposed a signed bipartite graph neural network enhanced by potential group assignment and contrast learning,which could extract the display and implicit information fully through complementing each other with homogeneous and heterogeneous spaces.In the homogeneous space,this paper treated nodes as a combination of multiple learnable potential groups,and then mined information among nodes by training automatically.In the heterogeneous space,this paper adopted the attention aggregators with directions to aggregate information of neighbors,and then used the contrast learning for network reconstruction based on mutual information to guide the aggregation process to obtain more expressive node representations.This paper performed comparative experiments with a variety of related models on the signed link prediction task.Expe-rimental results show that it can obtain optimal values for 12 of the 16 evaluation results obtained using four evaluation metrics on four real datasets,which verifies the effectiveness of the proposed model.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.7.99