Drift-free localisation using prior cross-source map for indoor low-light environments  

在线阅读下载全文

作  者:Junyi Tao Weichen Dai Da Kong Jiayan Wan Bin He Yu Zhang 

机构地区:[1]State Key Laboratory of Industrial Control Technology,College of Control Science and Engineering,Zhejiang University,Hangzhou,China [2]School of Computer Science,Hangzhou Dianzi University,Hangzhou,China [3]Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province,Hangzhou,China

出  处:《IET Cyber-Systems and Robotics》2023年第1期122-131,共10页智能系统与机器人(英文)

基  金:supported by the National Natural Science Foundation of China(Grant No.62088101);in part by STI 2030-Major Projects 2021ZD0201403;the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(No.ICT2022B04);the Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ22F030022.

摘  要:In this study,a localisation system without cumulative errors is proposed.First,depth odometry is achieved only by using the depth information from the depth camera.Then the point cloud cross-source map registration is realised by 3D particle filtering to obtain the pose of the point cloud relative to the map.Furthermore,we fuse the odometry results with the point cloud to map registration results,so the system can operate effectively even if the map is incomplete.The effectiveness of the system for long-term localisation,localisation in the incomplete map,and localisation in low light through multiple experiments on the self-recorded dataset is demonstrated.Compared with other methods,the results are better than theirs and achieve high indoor localisation accuracy.

关 键 词:indoor positioning ROBOTS 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象