基于图自编码器的无监督多变量时间序列异常检测  被引量:1

GAE-based Unsupervised Anomaly Detection of Multivariable Time Series

在线阅读下载全文

作  者:严盛辉 陈志德[1,2] YAN Sheng-Hui;CHEN Zhi-De(College of Computer and Cyber Security,Fujian Normal University,Fuzhou 350007,China;Fujian Provincial Key Laboratory of Network Security and Cryptology(Fujian Normal University),Fuzhou 350007,China)

机构地区:[1]福建师范大学计算机与网络空间安全学院,福州350007 [2]福建省网络安全与密码技术重点实验室(福建师范大学),福州350007

出  处:《计算机系统应用》2023年第5期308-315,共8页Computer Systems & Applications

基  金:国家自然科学基金(62277010,61841701);福建省自然科学基金(2021J011013)。

摘  要:针对多变量时间序列复杂的时间相关性和高维度使得异常检测性能较差的问题,以对抗训练框架为基础提出基于图自编码的无监督多变量时间序列异常检测模型.首先,将特征转换为嵌入向量来表示;其次,将划分好的时间序列结合嵌入向量转换为图结构数据;然后,用两个图自编码器模拟对抗训练重构数据样本;最后,根据测试数据在模型训练下的重构误差进行异常判定.将提出的方法与5种基线异常检测方法进行比较.实验结果表明,提出的模型在测试数据集获得了最高的F1分数,总体性能分F1分数比最新的异常检测模型USAD提高了28.4%.可见提出的模型有效提高异常检测性能.The complex time correlation and high dimension of multivariable time series lead to poor anomaly detection performance.In view of this,an unsupervised anomaly detection model of multivariable time series based on graph autoencoders(GAEs)is proposed with the adversarial training framework as the basis.First,features are converted into embedded vectors.Secondly,the divided time series and embedded vectors are converted into graph-structured data.Then,two GAEs are used to simulate the adversarial training and reconstruct data samples.Finally,the anomaly is determined according to the reconstruction error of the test data under the model training.The proposed method is compared with five baseline anomaly detection methods.The experimental results show that the proposed model achieves the highest F1 score on the test data set,and the overall performance F1 score is 28.4%higher than that of the latest anomaly detection model,namely,USAD.Therefore,it can be seen that the proposed model can effectively improve the performance of anomaly detection.

关 键 词:异常检测 多变量时间序列 对抗训练 图自编码器 重构 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP311.13[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象