检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:严盛辉 陈志德[1,2] YAN Sheng-Hui;CHEN Zhi-De(College of Computer and Cyber Security,Fujian Normal University,Fuzhou 350007,China;Fujian Provincial Key Laboratory of Network Security and Cryptology(Fujian Normal University),Fuzhou 350007,China)
机构地区:[1]福建师范大学计算机与网络空间安全学院,福州350007 [2]福建省网络安全与密码技术重点实验室(福建师范大学),福州350007
出 处:《计算机系统应用》2023年第5期308-315,共8页Computer Systems & Applications
基 金:国家自然科学基金(62277010,61841701);福建省自然科学基金(2021J011013)。
摘 要:针对多变量时间序列复杂的时间相关性和高维度使得异常检测性能较差的问题,以对抗训练框架为基础提出基于图自编码的无监督多变量时间序列异常检测模型.首先,将特征转换为嵌入向量来表示;其次,将划分好的时间序列结合嵌入向量转换为图结构数据;然后,用两个图自编码器模拟对抗训练重构数据样本;最后,根据测试数据在模型训练下的重构误差进行异常判定.将提出的方法与5种基线异常检测方法进行比较.实验结果表明,提出的模型在测试数据集获得了最高的F1分数,总体性能分F1分数比最新的异常检测模型USAD提高了28.4%.可见提出的模型有效提高异常检测性能.The complex time correlation and high dimension of multivariable time series lead to poor anomaly detection performance.In view of this,an unsupervised anomaly detection model of multivariable time series based on graph autoencoders(GAEs)is proposed with the adversarial training framework as the basis.First,features are converted into embedded vectors.Secondly,the divided time series and embedded vectors are converted into graph-structured data.Then,two GAEs are used to simulate the adversarial training and reconstruct data samples.Finally,the anomaly is determined according to the reconstruction error of the test data under the model training.The proposed method is compared with five baseline anomaly detection methods.The experimental results show that the proposed model achieves the highest F1 score on the test data set,and the overall performance F1 score is 28.4%higher than that of the latest anomaly detection model,namely,USAD.Therefore,it can be seen that the proposed model can effectively improve the performance of anomaly detection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222