检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石达宁 陈永游[1] 刘建[1] 陈韵[1] 李阳雨 Shi Daning;Chen Yongyou;Liu Jian;Chen Yun;Li Yangyu(No.8511 Research Institute of CASIC,Nanjing 210007,Jiangsu,China)
机构地区:[1]中国航天科工集团8511研究所,江苏南京210007
出 处:《航天电子对抗》2023年第2期47-53,共7页Aerospace Electronic Warfare
摘 要:现代作战体系主要依靠战术数据链传递战术信息,因此对侦收到的敌方数据链信号进行准确高效识别的重要性日益凸显。现有特征提取方法是基于单一的信号维度,无法在更高维度条件下获得信号多维耦合特征,同时单一分类器分类识别概率不高。针对此问题,提出在数据链信号时频图和循环谱图中提取多维特征,采用基于AdaBoost算法的自适应优化组合分类器,形成AdaBoost强分类器对数据链信号进行识别。通过仿真分析可知,基于多维特征的AdaBoost强分类器对数据链信号的分类识别,相较于单个分类器,其识别准确率有明显提升,具有良好的应用前景。In modern warfare,combat units mainly rely on tactical data links to exchange tactical messages,so the importance of accurately and efficiently identifying enemy tactical data link signals is becoming prominent.Current feature extraction methods are not capable of extracting coupling features of signal in the condition of multi-dimension,because they extract feature in single dimension only.Meanwhile,single classifier could not reach high recognition accuracy.In terms of questions above,an approach that constructs combined multiple clas⁃sifiers and adjusts weight dynamically based on AdaBoost is proposed,after extracting multi-dimensional features of signals from their time-frequency images and cyclic spectrum images.Simulation analysis shows that proposed approach could improve recognition accuracy clearly compared with single classifier,and has good application prospect.
关 键 词:数据链 特征提取 ADABOOST分类器 信号识别
分 类 号:TN971.5[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.61.19