检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林家琪 冯璐 王克敏 郭昆[1,2,5] LIN Jiaqi;FENG Lu;WANG Kemin;GUO Kun(College of Computer and Data Science,Fuzhou University,Fuzhou,China,350116;Fujian Key Laboratory of Network Computing and Intelligent Information Processing(Fuzhou University),Fuzhou,China,350108;China National Tobacco Corporation Guizhou Provincial Company Tobacco Leaf Department,Guizhou,China,550004;China National Tobacco Corporation Guizhou Provincial Company Financial Management Department,Guizhou,China,550004;Key Laboratory of Spatial Data Mining&Information Sharing,Ministry of Education,Fuzhou,China,350108)
机构地区:[1]福州大学计算机与大数据学院,福州350108 [2]福建省网络计算与智能信息处理重点实验室(福州大学),福州350108 [3]中国烟草总公司贵州省公司财务管理处,贵州550004 [4]中国烟草总公司贵州省公司烟叶处,贵州550004 [5]空间数据挖掘与信息共享教育部重点实验室,福州350108
出 处:《福建电脑》2023年第5期1-6,共6页Journal of Fujian Computer
基 金:国家自然科学基金资助项目(No.62002063);福建省自然科学基金项目(No.2022J01118、No.2020J05112);中国烟草总公司贵州省公司科技项目(No.2022XM27)资助。
摘 要:针对现有图对比学习模型使用的随机数据增强策略可能会破坏网络中关键的社区结构、对比对选择策略可能将具有相似拓扑结构或属性的节点选为负样本等问题,本文提出了一种基于自适应图对比学习的社区发现算法,设计了一个考虑节点重要性的自适应图增强策略和一个基于K近邻的正负样本选择策略来解决以上问题。在真实网络上的实验表明,本文提出的方法在社区发现任务中取得了比现有最好算法高4%以上的准确性,在供应链金融风险控制任务中取得了比现有最好算法高3%以上的准确性。Aiming to the problems that the most graph contrastive learning algorithms use random data augmentation strategies that may destroy the critical community structure in the network and the contrastive pair selection strategy that may select nodes with similar topology or attributes as negative samples,this paper proposes a community detection algorithm based on adaptive graph contrastive learning,and designs an adaptive graph enhancement strategy that considers the importance of nodes and a K-nearest neighbor-based positive sample selection strategy to solve the above problems.Experiments on real-world networks show that the method proposed in this paper is able to achieve an accuracy more than 4%higher than the best existing algorithms in community detection task and more than 3%higher accuracy than the best existing algorithms in the supply chain finance risk control task.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30