小波变换和CNN涡旋压缩机故障诊断  被引量:4

Fault diagnosis of scroll compressor based on wavelet transform and CNN

在线阅读下载全文

作  者:苏莹莹[1] 毛海旭 SU Yingying;MAO Haixu(School of Mechanical Engineering,Shenyang University,Shenyang 110000,China)

机构地区:[1]沈阳大学机械工程学院,辽宁沈阳110000

出  处:《中国测试》2023年第4期92-97,共6页China Measurement & Test

摘  要:针对传统单尺度信号分析难以有效解决涡旋压缩机故障诊断中的故障特征信息多尺度耦合问题,提出一种基于小波变换和卷积神经网络的涡旋压缩机故障诊断方法。首先将采集到的振动信号进行连续小波变换生成时频图,并对时频图进行网格化规范处理,将预处理后的时频图作为特征图输入Alexnet卷积神经网络,通过不断调节网络参数,得出最为理想的神经网络模型,以此实现对涡旋压缩机故障类型的辨识诊断。结果表明,该方法针对涡旋压缩机故障类型的识别准确率达到94.6%,与传统多尺度排列熵、信息熵熵距的故障诊断方法相比,该故障识别方法具有更高的准确率。In order to solve the problem that traditional single-scale signal analysis is difficult to effectively solve the problem of multi-scale coupling of fault feature information in the fault diagnosis of scroll compressors,a fault diagnosis method based on wavelet transform and convolutional neural network(CNN)is proposed.Firstly,the collected vibration signal is analyzed by continuous wavelet transform to generate timefrequency diagram.And the generated time-frequency diagram is gridded and normalized.Then,it has to be inputtd to Alexnet convolutional neural network,and the network parameters are adjusted to obtain the most ideal network model,so as to realize the identification and diagnosis fault types of scroll compressors.The results show that the recognition accuracy reaches 94.6%,with higher accuracy than the traditional methods of multi-scale permutation entropy and distance of the information entropy.

关 键 词:故障诊断 振动信号 小波变换 卷积神经网络 

分 类 号:U226.81[交通运输工程—道路与铁道工程] TB9[一般工业技术—计量学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象