检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑增亮 沈宙锋 苏前敏[1] ZHENG Zengliang;SHEN Zhoufeng;SU Qianmin(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620
出 处:《智能计算机与应用》2023年第4期8-13,共6页Intelligent Computer and Applications
基 金:“十三五”国家科技重大专项(2018ZX09711001-009-011);科技创新2030-“新一代人工智能”重大项目(2020AAA0109300)。
摘 要:目前在处理医学文本实体间关系提取任务中,使用传统的词向量表示方法无法解决医学文本中的词多义性问题,加上基于长短时记忆网络对文本语义局部特征抽取不够充分,不能充分捕捉医疗文本隐藏的内部关联信息。因此,提出一种基于XLNet-BiGRU-Attention-TextCNN的医疗文本实体关系抽取模型。利用XLNet模型将输入的医疗文本转化为向量形式,接着连接双向门控循环神经网络(BiGRU)提取文本语句的长距离依赖关系,然后使用注意力机制(Attention)为特征序列分配权重,降低噪声影响,最后利用文本卷积神经网络(TextCNN)对序列进行局部特征提取并通过softmax层输出关系抽取结果。实验结果表明,本文所提模型在精确率、召回率和F值上均优于基准模型。At present,in the task of extracting the entity relationship of medical texts,the traditional word vector representation method cannot solve the problem of polysemous words in medical texts.In addition,the extraction of semantic local features of texts based on long and short-term memory networks is not sufficient,which could not capture the internal related information hidden in medical texts.To address the problem,a medical text entity relationship extraction model based on XLNet-BiGRU-Attention-TextCNN is proposed.Use the pre-trained language model XLNet to convert the input medical text into vectors,and connect the bidirectional gated recurrent neural network(BiGRU)to extract the long-distance dependence of the text sentence,then use the attention mechanism(Attention)to assign weights to the feature sequence,thereafter reduce the impact of noise,finally use the Text Convolutional Neural Network(TextCNN)to extract local features of the sequence and output the relationship extraction results through the softmax layer.Experimental results show that the model proposed in this paper is better than the benchmark model in terms of accuracy,recall and F value.
关 键 词:医疗文本 医疗实体关系抽取 XLNet 双向门控循环单元 注意力机制 TextCNN
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.82.179