检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:上官天钧 丁学明[1] 王霞红 于舟欣 SHANGGUAN Tian-jun;DING Xue-ming;WANG Xia-hong;YU Zhou-xin(School of Optical-electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093;Shanghai Jiading District Maternal and Child Health Hospital,Shanghai 201800)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093 [2]上海嘉定妇幼保健院,上海201800
出 处:《控制工程》2023年第4期722-729,共8页Control Engineering of China
基 金:国家高技术研究发展计划资助项目(61673277)。
摘 要:针对使用传统机器学习方法分割胎儿图像中头部和股骨的精度较低且效果差,提出了一种新型的注意力Unet架构。在注意力Unet中加入了通道注意力机制平均最大模块(AMB),将原有的卷积层模块替换为不同卷积块组合的InceptionV2+模块,并在网络深层处加入了不同尺寸的空洞卷积模块。同时,研究了Dice损失函数和Focal损失函数相结合替换二元交叉熵对图像分割效果的影响。实验结果表明,所提方法对胎儿头部和股骨图像的分割效果良好,在准确率、Dice系数、交并比(IOU)、豪斯多夫距离(HD)评价指标方面优于如今主流的医学图像分割方法。For the reason that the traditional machine learning method has low accuracy and poor effect in the segmentation of head and femur from fetal images, a novel Attention Unet architecture is proposed. The channel attention mechanism average maximum block(AMB) is added to Attention Unet. InceptionV2+ block with combination of different convolution blocks is used to replace the original convolution layer block, and the dilation convolution blocks of different sizes are added to the deep part of the network. At the same time,the effect of Dice loss function and Focal loss function combination instead of binary cross entropy on image segmentation is studied. The experimental results show that the proposed method has a good effect in segmentation of head and femur from fetal images, and is superior to the current mainstream medical image segmentation methods in terms of accuracy, Dice coefficient, intersection-over-union(IOU) and Hausdorff distance(HD) evaluation indexes.
关 键 词:注意力机制 InceptionV2+模块 空洞卷积 Focal损失函数
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222