检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张矢宇[1] 杨杰[1] 田志武 ZHANG Shiyu;YANG Jie;TIAN Zhiwu
机构地区:[1]武汉理工大学交通与物流工程学院,湖北武汉430063 [2]武汉环境投资开发集团有限公司,湖北武汉430013
出 处:《武汉理工大学学报(信息与管理工程版)》2023年第2期252-257,共6页Journal of Wuhan University of Technology:Information & Management Engineering
基 金:交通运输部(科技司)资助项目(2022-07-008)。
摘 要:在我国“碳达峰、碳中和”目标下,交通运输业作为碳排放的主要贡献者之一,将是节能减排的关键一环和重要渠道。基于LMDI分解法,从经济、能源等方面对中国交通运输碳排放变化的影响因素进行分析;并结合我国当前发展环境,设置主要影响因素作为输入层参数,构建BP神经网络预测我国近年交通运输业的碳排放。结果表明:我国交通运输碳排放的主要促进因素为交通运输结构、城镇居民人均GDP、城乡人口结构和总人口规模,主要抑制因素为单位运输能耗水平、交通运输单位产值周转量和单位GDP交通运输产值;在这些因素中,城镇居民人均GDP对碳排放的促进作用最为明显,单位运输能耗水平对碳排放的抑制作用最为显著;预测结果表明当前环境作用下,我国交通运输业碳排放量在2030年将达81036万t,交通运输碳排放量将持续增加,增幅减缓。Under the goal"to peak carbon dioxide emissions and achieve carbon neutrality"in China,transportation industry as one of the main contributors of CO_(2) emission,is a key way to save energy and reduce emissions.In order to study the change of transportation carbon emission in China,LMDI decomposition model is constructed to analyze the influencing factors of CO_(2) emission change in China′s transportation industry from the aspects of economy,energy,etc;and then the main influencing factors are set as input layer parameters by building BP neural network to predict CO_(2) emissions in the next ten years.The results show that the major driving factors of the CO_(2) emissions are transport structure,per capita GDP of urban residents,urban and rural population structure and total population scale.Per unit of transport of energy consumption,turnover of output value per unit of transportation and output value of transportation per unit of GDP are the major restraining factors.Among them,the per capita GDP of urban residents has the most obvious promoting effect on carbon emissions,and the per unit of transport of energy consumption has the most obvious inhibiting effect on carbon emissions.The forecast results show that the CO_(2) emissions will reach 810.36 million tons in 2030,and it will continue to increase with a retardation growth rate.
关 键 词:综合运输 交通运输碳排放 LMDI BP神经网络 碳排放预测
分 类 号:U491.9[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49