基于MFAPC的智能车辆跟随式自动驾驶纵向加速度控制算法  被引量:2

Longitudinal Acceleration Control of Intelligent Vehicle Following Autonomous Driving Based on MFAPC

在线阅读下载全文

作  者:谭宇航 TAN Yuhang(School of Construction Machinery,Chang'an University,Xi'an 710064,China)

机构地区:[1]长安大学工程机械学院,陕西西安710064

出  处:《汽车实用技术》2023年第9期59-65,共7页Automobile Applied Technology

摘  要:针对智能驾驶车辆纵向动力学存在非线性、外界干扰等问题,提出一种基于紧格式的无模型自适应预测控制(MFAPC)车辆纵向加速度控制算法,并进行了仿真验证。前馈控制可以提高响应,并补偿系统的非线性特性;MFAPC算法不依赖被控系统的精确模型,仅利用了被控系统的输入/输出数据。前馈控制与MFAPC反馈控制协同作用,实现了对期望加速度快速、精确地跟踪。最后,通过与比例-积分-微分(PID)控制算法进行比较,所提出的控制方法能够在有外界干扰的情况下,仍具有较好的性能表现。Aiming at the problems of nonlinearity and external interference in the longitudinal dynamics of intelligent driving vehicles,a model-free adaptive predictive control(MFAPC)vehicle longitudinal acceleration control algorithm based on compact format is proposed,and simulation is carried out.Feed-forward control improves response and compensates for the nonlinear charac-teristics of the system;The MFAPC algorithm does not rely on the exact model of the controlled system,but only utilizes the input/output data of the controlled system.Feed-forward control works in synergy with MFAPC feedback control to enable fast and accuratetracking ofdesired acceleration.Finally,by comparing with the proportion integration differentiation(PID)control algorithm,the proposed control method can still have good performance in the case of external interference.

关 键 词:纵向动力学 跟随式自动驾驶 加速度控制 MFAPC 

分 类 号:U461[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象