基于机器视觉的物流运输轨迹分段拟合系统设计  

Design of logistics and transportation track segment fitting system based on machine vision

在线阅读下载全文

作  者:朱荣花[1] ZHU Ronghua(Xi’an Siyuan University,Xi’an 710038,China)

机构地区:[1]西安思源学院,西安710038

出  处:《自动化与仪器仪表》2023年第4期196-200,205,共6页Automation & Instrumentation

基  金:陕西省教育厅科研计划项目《西安近零能耗居住建筑围护结构适宜性研究》(2022JK0519)。

摘  要:针对传统物流运输系统存在控制效果差、货物运输准确性低的问题,提出一个基于机器视觉的物流运输轨迹分段拟合系统。首先,系统采用机器视觉模块对二维码进行扫描,以实现物流运输车启动;然后采用改进增量式PID算法应用到主控制模块中,开启物流舱门,并根据提取的二维码信息进行路线行驶;行驶过程中通过避障模块的电信号对障碍物进行处理,并利用电机驱动模块进行避障操作;最终实现智能物流运输有效控制。实验结果表明,传统增量式PID控制系统在290 ms左右电机转速稳定在2000 r/min,超调量为10.1%;改进增量式PID转速控制系统在190 ms左右电机转速稳定在2000 r/min,超调量为5.1%。相较于传统增量式PID控制,改进的增量式PID转速控制达到系统稳定的时间更短,超调量更小,控制效果更佳,可有效提升运输效率和控制精度。In view of the problems of poor control effect and low accuracy of cargo transportation in the traditional logistics and transportation system,a segment fitting system based on machine vision is proposed.First,the system uses the machine vision module to scan the QR code to start the logistics transport vehicle;then the improved incremental PID algorithm is applied to the main control module to open the logistics warehouse door and follow the extracted QR code information;process the obstacles through the electrical signal of the obstacle avoidance module and use the motor drive module to operate the obstacle avoidance;and finally realize the effective control of intelligent logistics transportation.The experimental results show that the motor speed of the traditional incremental PID control system is stable at 2000 r/min around 290ms,and the overshoot is 10.1%;the improved incremental PID speed control system is stable at 2000 r/min around 190ms,and the overshoot is 5.1%.Compared with the traditional incremental PID control,the improved incremental PID speed control can achieve system stability with shorter time,smaller overshoot,and better control effect,which can effectively improve the transportation efficiency and control accuracy.

关 键 词:机器视觉 物流运输轨迹 分段拟合 增量式PID算法 电机控制 

分 类 号:TP392[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象