基于机器学习的无线网络隐性故障智能定位系统研究  

在线阅读下载全文

作  者:周毅[1] 

机构地区:[1]中国移动通信集团江苏有限公司

出  处:《江苏通信》2023年第2期101-107,共7页Jiangsu Communication

摘  要:广泛使用业界优秀的开源技术和AI算法,对多个无线网络小区业务、性能指标结合历史数据进行异常检测,实现有监督的机器学习能力,基于循环神经网络(RNN)、孤立森林(Isolation Forest)和统计模型的智能定位算法,结合多系统多维度数据实现全网小区业务及性能的动态分析,主动定位和发现网络中设计缺陷、现场故障、软硬件未知漏洞等问题,总结定位问题形成案例库,并自学习优化定位算法,逐步完善智能学习条件和功能,实现小区级隐性故障的智能定位和发现。该系统已完成19776个小区隐性故障整治,系统隐性故障定位准确率为82%。

关 键 词:故障定位 隐患整治 机器学习 神经网络 

分 类 号:TN92[电子电信—通信与信息系统] TP181[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象