检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘潇 刘智 林雨准 王淑香 左溪冰 LIU Xiao;LIU Zhi;LIN Yuzhun;WANG Shuxiang;ZUO Xibing(Institute of Geospatial Information,Information Engineering University,Zhengzhou 450001,China)
机构地区:[1]信息工程大学地理空间信息学院,郑州450001
出 处:《地球信息科学学报》2023年第5期1050-1063,共14页Journal of Geo-information Science
摘 要:卷积神经网络已广泛应用于遥感影像场景分类任务,然而优秀的模型体量大,无法部署到资源受限的边缘设备中,直接应用现有的知识蒸馏方法压缩模型,忽略了场景数据的类内多样性和类间相似性。为此,本文提出一种类中心知识蒸馏方法,旨在获得一个紧凑高效且精度高的遥感影像场景分类网络。首先对预训练的教师网络进行微调,然后基于设计的类中心蒸馏损失将教师网络强大的特征提取能力迁移到学生网络,通过约束师生网络提取的同类特征分布中心的距离完成知识的转移,同时在蒸馏过程中结合真值标签训练,最后学生网络单独用于预测。实验在4个数据集上与8种先进的蒸馏方法在不同训练比率、不同师生架构下进行了比较,本文方法均达到最高分类精度。其中,在训练比率为60%的RSC11、UCM、RSSCN7及AID数据集中,相比于性能最好的其他蒸馏方法,师生网络属同系列时分类总体精度分别提升了2.42%、2.74%、2.95%和1.07%。相似技术对比实验及可视化分析进一步证明了本文方法优异的性能。本文所提出的类中心知识蒸馏方法更好地传递了复杂网络所提取的类内紧凑、类间离散的特征知识,提高了轻量网络分类的性能。Convolutional neural networks have been widely used in the task of Remote Sensing Image Scene Classification(RSISC)and have achieved extraordinary performance.However,these excellent models have large volume and high computational cost,which cannot be deployed to resource-constrained edge devices.Moreover,in the RSISC task,the existing knowledge distillation method is directly applied to the compression model,ignoring the intra-class diversity and inter-class similarity of scene data.To this end,we propose a novel class-centric knowledge distillation method,which aims to obtain a compact,efficient,and accurate network model for RSISC.The proposed class-centric knowledge distillation framework for remote sensing image scene classification consists of two streams,teacher network flow and student network flow.Firstly,the remote sensing image scene classification dataset is sent into the teacher network pre-trained on a large-scale dataset to fine-tune the parameters.Then,the class-centric knowledge of the hidden layer is extracted from the adjusted teacher network and transferred to the student network based on the designed class center distillation loss,which is realized by constraining the distance of the distribution center of similar features extracted by the teacher and student network,so that the student network can learn the powerful feature extraction ability of the teacher network.The distillation process is combined with the truth tag supervision.Finally,the trained student network is used for scene prediction from remote sensing images alone.To evaluate the proposed method,we design a comparison experiment with eight advanced distillation methods on classical remote sensing image scene classification with different training ratios and different teacher-student architectures.Our results show that:compared to the best performance of other distillation methods,in the case of the teacher-student network belonging to the same series,the overall classification accuracy of our proposed method is increased by 1.4
关 键 词:场景分类 模型压缩 知识蒸馏 类中心 再生核希尔伯特空间 遥感 深度学习 卷积神经网络
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7