基于预测模型的事件触发控制  

Event-Triggered Control Based on Predictive Models

在线阅读下载全文

作  者:梁家豪 唐予军[1] 王霞[1] LIANG Jia-hao;TANG Yu-jun;WANG Xia(School of Electronic Information Engineering,Hebei University,Baoding Hebei 071002,China)

机构地区:[1]河北大学电子信息工程学院,河北保定071002

出  处:《计算机仿真》2023年第4期251-256,共6页Computer Simulation

基  金:河北省自然科学基金面上项目(F2019201095);国家自然科学基金(12171135);国家自然科学基金(62103126);国家自然科学基金青年项目(61903119)。

摘  要:为具有通信延迟的网络控制系统设计一种基于预测模型的事件触发控制,在网络系统的被控对象侧加入模型预测器,并使用预测出的未来状态设计一种新的事件触发机制,以消除通信延迟带来的影响,从而保证系统稳定并改善网络控制系统的动态。首先通过状态观测器根据系统可测输出估计系统状态;设计模型预测器用来预测系统未来状态,并且用系统未来预估状态设计出一种新的事件触发机制,相比于利用系统当前状态触发,给控制器留出了时间裕量,从而消除控制器到被控对象的通信迟延影响;最后利用扩维技术证明系统的稳定性,并且证明系统不存在Zeno行为。通过仿真实例证明,所设计的基于预测模型的事件触发控制对网络通信延迟系统的有效性。This paper designs a predictive model-based event-triggered control for a network control system with communication delays.A model predictor is incorporated into the controlled object of the network system,and the predicted future state is used to design an event-triggering mechanism to eliminate the effects of communication delays.As a result,system stability is ensured and the dynamics of the network control system are improved.Firstly,the system state was estimated from the measurable output of the system by a state observer.Then,a model predictor was designed to predict the future state of the system and the corresponding event triggering conditions were designed using the predicted future state of the system.This approach gives the controller a time margin compared to using the current state of the system to trigger,thus eliminating the effect of delayed communication from the controller to the controlled object.Finally,the stability of the system was demonstrated using the extended dimension technique,and it is shown that the system does not have Zeno behaviour.The effectiveness of the designed predictive model-based event-triggered control for network communication delay systems was demonstrated through simulation examples.

关 键 词:事件触发控制 模型预测 通信延迟 网络控制 系统镇定 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象