检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙环 陈宏滨[1] SUN Huan;CHEN Hong-bin(School of Information and Communication,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004
出 处:《计算机仿真》2023年第4期386-391,460,共7页Computer Simulation
基 金:国家自然科学基金资助项目(61671165);桂林电子科技大学研究生教育创新计划资助项目(2018YJCX39)。
摘 要:近年来,节点部署优化问题引起了越来越多的研究者的关注。针对无线传感器网络节点部署中存在的网络负载不均衡问题,提出了一种无线传感器网络中负载均衡的节点重部署(Load Balanced Node Redeployment, LBNR)算法。算法在网络初始化之后,利用K-means算法进行分簇,引入冗余节点,对负载大的簇进行拆分,对负载小的簇进行簇成员节点调整。其中,在减小簇规模阶段,利用帝王蝶优化算法对冗余节点进行移动,以进行簇拆分;在增大簇规模阶段,采用邻近运动方式,进行簇成员调整。上述算法通过有效地移动节点,均衡了网络负载,提高了网络能量使用效率。而且与其它节点部署方案相比,研究提出的方案采集数据量明显增加,网络负载更均衡,传感器网络的生命周期显著延长。In recent years,node deployment optimization has attracted more and more researchers'attention.A Load Balanced Node Redeployment(LBNR)algorithm for wireless sensor networks is proposed to solve the problem of network Load imbalance in Node deployment.After network initialization,this algorithm uses the K-means algorithm to divide clusters,introduces redundant nodes,splits the clusters with large load,and adjusts the cluster member nodes for the clusters with small load.In the stage of reducing the cluster size,the Monarch Butterfly optimization algorithm is used to move the redundant nodes to split the clusters.In the stage of increasing the cluster size,the cluster members are adjusted by the adjacent motion.By effectively moving nodes,the algorithm balances the network load and improves the efficiency of network energy use.Moreover,compared with other node deployment schemes,the proposed scheme significantly increases the amount of data collected,the network load is more balanced,and the life cycle of the sensor network is significantly prolonged.
关 键 词:无线传感器网络 节点重部署 负载均衡 帝王蝶优化 冗余节点
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7