检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李浩 蒲云[1] 毋文峰 LI Hao;PU Yun;WU Wen-feng(School of Transportation and Logistics,Southwest Jiaotong University,ChengduSichuan 610031,China;Officers College of PAP,Chengdu Sichuan 610213,China)
机构地区:[1]西南交通大学交通运输与物流学院,四川成都610031 [2]武警警官学院,四川成都610213
出 处:《计算机仿真》2023年第4期514-519,共6页Computer Simulation
基 金:国家重点研发计划课题(2017YFB1200703);国家重点研发计划课题(2016YFC0802209);国家自然科学基金(51278429);四川省科技计划项目(2019YJ0266)。
摘 要:针对旋转机械乘性噪声信号去噪困难问题,综合小波变换与P-M扩散滤波模型,提出了一种可以去除乘性噪声的小波域P-M滤波算法用于旋转机械振动信号去噪预处理。上述算法通过小波变换将含噪信号进行分高低频段,并消除孤立噪声点,再运用P-M滤波算法进行降噪,从而得到保留信号特征信息的净化信号;将改进的算法用于滚动轴承振动仿真信号和CWRU实测信号进行验证。根据实验数据与结果,对于旋转机械乘性信号去噪,改进的小波域P-M滤波算法比单一的小波软/硬阈值去噪算法及P-M扩散滤波去噪模型去噪效果更佳,保留信号细节特征的优势更明显。In view of the difficulty in denoising the multiplicative noise signal of rotating machinery,a wavelet domain P-M filtering algorithm is proposed for denoising the vibration signal of rotating machinery,which can remove the multiplicative noise by integrating wavelet transform and P-M diffusion filtering model.Using this algorithm,the noise signal was divided into frequency bands by wavelet transform,and the isolated noise points were eliminated.Then the P-M filtering algorithm was used to de-noise,so as to obtain the purification signal with the characteristic information of the signal retained.Finally,the improved algorithm was used to verify the vibration simulation signals of rolling bearings and the measured signals of cwru.According to the experimental data and results,the improved wavelet domain p-m filtering algorithm has better denoising effect than the single wavelet soft/hard threshold denoising algorithm and the P-M diffusion filtering denoising model for the multiplicative signal denoising of rotating machinery,and the advantage of preserving the signal details is more obvious.
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3