检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柳厚祥[1] 王建 Liu Houxiang;Wang Jian(School of Civil Engineering,Changsha University of Science and Technology,Changsha 410114,P.R.China)
出 处:《地下空间与工程学报》2023年第2期437-445,共9页Chinese Journal of Underground Space and Engineering
基 金:湖南省水利厅科技项目(XSKJ2019081-39);湖南省教育厅科学研究重点项目(19A025)。
摘 要:为实现隧道围岩岩性的自动识别与分类,提出了基于迁移学习技术的围岩岩性识别方法。首先,通过采用Inception-ResNet-V2(IRV2)卷积神经网络模型在Image-Net数据集上进行预训练,并利用模型迁移学习技术对岩石图片数据集(包含花岗岩、石灰岩、玄武岩和页岩)进行再训练,获取隧道围岩岩性识别模型;然后,对IRV2进行模型测试,并与ResNet-50、Inception-V3和VGG16三种模型的识别性能进行对比;最后,进行子图像法与整体图像法的识别效果对比试验。实验结果表明:(1)IRV2的各项分类性能指标均表现为最优,且均可达到90%以上,表明该模型可以实现围岩岩性的有效识别与精确分类;(2)对于具有更加突出的纹理、结构和构造等外部特征的岩石图片,模型的识别性能更好;(3)子图像法相比于整体图像法可有效提高模型的识别性能。In order to realize the automatic recognition and classification of the surrounding rock lithology of the tunnel,a method of lithology recognition based on migration learning technology is proposed.First,pre-training on the Image-Net dataset by using the Inception-ResNet-V2(IRV2)convolutional neural network model,and using model transfer learning technology to retrain the rock image dataset(including granite,limestone,basalt and shale)to obtain The lithology recognition model of the surrounding rock of the tunnel;then,the IRV2 model is tested,and the recognition performance of the three models:ResNet-50,Inception-V3 and VGG16 is compared;finally,the sub-image method and the overall image method are performed Comparative test of recognition effect.The experimental results show that:(1)The various classification performance indicators of IRV2 are all the best,and all can reach more than 90%,indicating that the model can realize the effective identification and accurate classification of surrounding rock lithology;(2)For rock pictures with more prominent texture,structure and structure,the recognition performance of the model is better;(3)The sub-image method can effectively improve the model's performance compared to the overall image method.Identify performance.
关 键 词:隧道工程 岩性识别 迁移学习 子图像法 Inception-Resnet-V2
分 类 号:U452.1[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.12