检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王唯鉴 王勇 杨骁 章俊哲 彭程星 WANG Wei-jian;WANG Yong;YANG Xiao;ZHANG Jun-zhe;PENG Cheng-xing
机构地区:[1]北京机械工业自动化研究所有限公司,北京100120 [2]北自所(北京)科技发展股份有限公司,北京100120
出 处:《制造业自动化》2023年第5期202-206,共5页Manufacturing Automation
摘 要:为提升复杂场景下多AGV系统任务分配效率,适配动态多变的现代物流搬运场景,提出一种基于多智能体深度强化学习的任务分配方法。首先,根据问题约束条件和优化目标按照强化学习范式对问题进行建模,利用栅格地图建立了算法训练环境,并规定了智能体动作和环境可观测状态,其次应用IDQN算法训练生成指导AGVS任务分配的动作价值函数,最后,在不同问题规模下通过实验证明了IDQN方法相较于传统算法解决同一问题的效率优势,并展示了模型在不同尺度地图中的泛化能力。
关 键 词:自动引导车 任务分配 实时调度 多智能体深度强化学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33