基于MP与GA-VMD结合的地震资料去噪方法研究  

Research on seismic data denoising method based on MP and GA-VMD

在线阅读下载全文

作  者:王肖 周怀来[1,2,3] 王元君[1,2] 邬蒙蒙 陶柏丞 WANG Xiao;ZHOU Huailai;WANG Yuanjun;WU Mengmeng;TAO Bocheng(Chengdu University of Technology College of Geophysics,Chengdu 610059,China;Chengdu University of TechnologyState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu 610059,China;Chengdu University of Technology Key Laboratory of Earth Exploration and Information Technology of Ministry of Education,Chengdu 610059,China)

机构地区:[1]成都理工大学地球物理学院,成都610059 [2]成都理工大学油气藏地质及开发工程国家重点实验室,成都610059 [3]成都理工大学地球探测与信息技术教育部重点实验室,成都610059

出  处:《物探化探计算技术》2023年第2期156-168,共13页Computing Techniques For Geophysical and Geochemical Exploration

基  金:四川省科技厅重点研发项目(21ZDYF2939)。

摘  要:传统变分模态分解(VMD)方法地震资料去噪效果受惩罚参数α和模态分量个数K影响较大,为了更加有效地抑制噪声对地震资料的影响,这里提出了遗传算法改进的VMD(GA-VMD)与匹配追踪(MP)相结合的地震资料去噪方法。该方法与MP及遗传算法相结合,在有效提取地震资料信息同时,能够自适应选择VMD的决定参数[K,α],使去噪效果达到最佳。将本方法应用于模拟地震信号和实际地震资料去噪,并与传统VMD方法和MP去噪方法对比。数据仿真与实验结果表明,在原始信号信噪比为3.11 dB时,传统方法和本文方法去噪后信号信噪比分别为6.29 dB与9.43 dB,本文方法在不损失有效信号的同时,具有更好的去噪效果。Penalized parameters of seismic data denoising effect of traditional VMD methodαIn order to suppress the influence of noise on seismic data more effectively,a seismic data denoising method combining MP and genetic algorithm improved VMD(GA-VMD)is proposed.Combined with MP and genetic algorithm,this method can effectively extract seismic data information and adaptively select the decision parameters of VMD[K,α];this method is applied to denoise simulated seismic signals and actual seismic data and compared with traditional VMD method and MP denoising method.The data simulation and experimental results show that when the signal-to-noise ratio of the original signal is 3.11db,the signal-to-noise ratios of the traditional method and the proposed method are 6.29db and 9.43db,respectively.The proposed method has a better denoising effect without losing the effective signal.

关 键 词:去噪 地震数据 VMD MP 遗传算法 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象