检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董涛[1] 关潆 DONG Tao;GUAN Ying(School of Information Engineering,Liaodong University,Dandong 118003,China)
出 处:《辽东学院学报(自然科学版)》2023年第1期57-64,共8页Journal of Eastern Liaoning University:Natural Science Edition
基 金:辽宁省自然科学基金重点科技创新基地联合开放基金项目(2022-KF-12-13)。
摘 要:针对复杂交通环境手工搭建神经网络人力成本高、小目标检测准确度低、使用锚框法参数多、算法实时性差等问题,提出一种基于关键点的复杂道路环境目标实时检测算法。首先,重构MBConv,改进EfficientNet主干特征提取网络,提高特征提取效率;其次,融入小尺度特征层,优化特征融合网络,提升复杂环境下小目标检测能力;最后,运用关键点预测法,完成检测目标分类及回归。在BDD100K数据集上的测试结果表明,设计算法的目标检测实时性较强,且对复杂环境中的小目标检测准确度较高。Aiming at the problems of high labor cost,low accuracy of small target detection,too many parameters of anchor frame method and poor real-time performance of algorithm in complex traffic environment,a real-time target detection algorithm based on key points in complex road environment was proposed.Firstly,MBConv was reconstructed,and EfficientNet backbone feature extraction network was improved so as to enhance feature extraction efficiency.Secondly,the small-scale feature layer was integrated to optimize the feature fusion network and improve the small target detection ability in complex environment.Finally,the key point prediction method was used to complete the detection target classification and regression.Tests on the BDD100K dataset showed that the method had strong real-time target detection and high accuracy for small target detection in complex environments.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7