实时洪水预报中基于岭估计的AR修正模型研究  被引量:4

Research on ridge-estimation based autoregressive model in real-time flood forecasting

在线阅读下载全文

作  者:刘可新[1] 徐海卿[1] 庞丽丽 郭易[1] 李匡[1] 梁犁丽 LIU Kexin;XU Haiqing;PANG Lili;GUO Yi;LI Kuang;LIANG Lili(China Institute of Water Resources and Hydropower Research,Beijing 100038,China;Richway(Beijing)Technology Co.Ltd,Beijing 100097,China;Institute of Science and Technology,China Three Gorges Corporation,Beijing 100038,China)

机构地区:[1]中国水利水电科学研究院,北京100038 [2]江河瑞通(北京)技术有限公司,北京100097 [3]中国长江三峡集团有限公司科学技术研究院,北京100038

出  处:《中国水利水电科学研究院学报(中英文)》2023年第3期212-221,235,共11页Journal of China Institute of Water Resources and Hydropower Research

基  金:国家重点研发计划项目(2018YFC0406400);中国长江三峡集团有限公司科研项目(WWKY-2021-0081,WWKY-2021-0411,202103566);中国水利水电科学研究院基本科研业务费专项项目(减基本科研01882103)。

摘  要:为提高实时洪水预报精度,经常将水文模型与误差修正模型相结合,AR模型因其结构简单广泛应用于实时洪水预报误差修正。然而,实际应用显示,AR模型时常出现修正结果不稳定现象,表现为流量修正幅度过大,甚至出现“震荡”现象,严重影响修正效果。鉴于此,本文从矩阵特征值角度解释了AR模型出现不稳定现象的原因,并引入岭估计方法选择性利用流量信息更新自回归系数,使其更满足真实流量的涨落过程,增强该模型的稳健性。将新方法应用于蔺河口流域,结果显示岭估计方法显著提高了AR模型的稳健性,从而改善了模型修正效果,进一步提高了洪水预报精度。In order to improve the accuracy of real-time flood forecasting,hydrological model and error correction model are often combined.Autoregressive(AR)model is widely used in real-time flood forecasting to update forecasting flow because of its simple structure.However,some applications show that the results of AR model are often unstable,showing too large flow corrections or even oscillations,which seriously affects its performance.In view of this,this paper makes an explanation for the instability of AR model from the perspective of matrix eigenvalue,and then introduces ridge estimation method to update the autoregressive coefficient by using selective flow information to make it more meet the process of the real flow,and this enhances the robustness of AR model.The results show that the ridge estimation method significantly improves the robustness of AR model,and thus further improves the accuracy of flood forecasting.

关 键 词:AR模型 岭估计 洪水预报 稳定性 误差修正 

分 类 号:P338[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象