检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱悦璐 王义成[2] ZHU Yuelu;WANG Yicheng(College of Water Conservancy and Ecological Engineering,Nanchang Institute of Technology,Nanchang330099,China;China Institute of Water Resources and Hydropower Research,Beijing100038,China)
机构地区:[1]南昌工程学院水利与生态工程学院,江西南昌330099 [2]中国水利水电科学研究院,北京100038
出 处:《中国水利水电科学研究院学报(中英文)》2023年第3期236-244,253,共10页Journal of China Institute of Water Resources and Hydropower Research
基 金:江西省科技厅自然科学基金项目(20192BAB206047,20202BABL204066)。
摘 要:为解决Richards入渗方程Parlange解中关键参变量c(t)难以计算的问题,本文设计一种基于试验假设分离变量的参数方程方案,将含有c(t)的积分方程转化为超越方程并求解析解。新方案计算结果表明,当试验参数D(θ)、K(θ)为幂函数时,改进模型收敛较快,通过十余次迭代即可获得稳定解,所生成的土体含水率运动轨迹曲线符合实际。方案对比结果表明,新方案与传统Parlange化简方案对比结果存在较大差异,与Philip级数解对比结果已十分接近,二者误差不超过5%;改进后的计算方案具有严格解析步骤和明确数学意义,可作为Parlange模型在关键计算步骤上的一个补充。In order to solve the problem that the key parameter c(t)in the Parlange Solution of Richards Equation is difficult to calculate,this paper proposes a variable separation method based on experimental hypothesis,which transforms the integral equation containing c(t)into transcendental equation and finds the analytical solution.The calculation results show that when the test parameters D(θ)and K(θ)are power functions,the improved method converges quickly,and a stable solution can be obtained by more than ten iterations,the generated trajectory curve of soil water content is in line with the reality.The comparison results show that there is a big difference between the new scheme and the traditional Parlange simplification scheme,which is very close to the Philip series solution,and the error between them is less than 5%;The improved calculation method has strict analytical steps and clear mathematical significance,which can be regarded as a supplement to the Parlange model in a key step.
关 键 词:Parlange解 RICHARDS方程 非饱和渗流 地下水 解析解
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80