检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘涛[1] 张勇 LIU Tao;ZHANG Yong(College of Intelligent Science and Engineering,Yantai Nanshan University,Yantai 265713,Shandong,China;School of Henan Institute of Metrology,Zhengzhou 450008,China)
机构地区:[1]烟台南山学院智能科学与工程学院,山东烟台265713 [2]河南省计量科学研究院,郑州450008
出 处:《机械科学与技术》2023年第5期709-714,共6页Mechanical Science and Technology for Aerospace Engineering
基 金:2020年南山集团科技计划项目。
摘 要:以四分之一汽车模型为研究对象,通过线性减振弹簧构建非线性Duffing振子,提出一种切实可行的非线性悬架系统构建方法。利用增维精细积分法求解非线性悬架系统动力学模型;以车身总加权加速度均方根值最小为优化目标,汽车偏频取值为约束条件,建立非线性悬架系统的优化模型,引入遗传算法,确定非线性悬架最优的弹簧刚度和阻尼系数;进行SIMULINK仿真,对比非线性悬架系统相与传统线性悬架系统的减振效果,进一步证明了所构建的非线性悬架系统的可行性和优越性,为非线性悬架方面的研究提供了一种新方法。In this paper,the quarter car model is taken as the research object,and a feasible nonlinear suspension system construction method is proposed based on the nonlinear Duffing oscillator constructed by linear damping spring.The dynamic model of nonlinear suspension system is solved by the increased dimensional fine integral method.The optimization model of the nonlinear suspension system was established,in which the optimization objective is to minimize the root mean square value of the total weighted acceleration of the vehicle body,and the constraint condition is the value of vehicle offset frequency.Genetic algorithm is introduced to determine the optimal spring stiffness and damping coefficient of nonlinear suspension system.The Simulink simulation result proves that the nonlinear suspension system has better feasibility and superiority than the traditional linear suspension system.This study provides a new method for the design and optimization of nonlinear suspension system.
关 键 词:DUFFING振子 非线性悬架 增维精细积分法 遗传算法优化
分 类 号:TH113.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.164.78